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Disclaimer

Caveat emptor (Let the buyer beware)
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Outline

From “Sparse” to “Coarse”
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“Sparse” approximation

Consider
m m
-
Idy = Z Ciui @ u; = ZC,'U,'U,' ,
i=1 i=1
where ¢y, ..., ¢y, are positive weights; uy, ..., uy, are unit vectors
o Td
in R,
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“Sparse” approximation

Consider
m m
-
Idg = Z Ciui @ uj = ZCIUiUi )
i=1 i=1
where ¢y, ..., ¢y, are positive weights; uy, ..., uy, are unit vectors
o Td
in R,

For a given g, find a smallest index set J such that

Idg
14¢

< ZE‘J'UJ' Q uj < (]. aF E)Idd
jeJ

for some positive weights {¢}jcy
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Intuition says d?...
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Bourgain'95

k < C(e)d(Ind)?
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What are the first steps?

Consider Idg = > ciui ® u;

i=1
Qualitative Question:
What is the size of the smallest index set J such that

g
1+ Mg

<> Eu @ up < (1+ Ag)ldy
jes

for some positive weights {¢;}jc; and some A4.
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What are the first steps?

Consider Idg = > ciui ® u;

i=1
Qualitative Question:
What is the size of the smallest index set J such that

g
1+ Mg

<> Eu @ up < (1+ Ag)ldy
jes

for some positive weights {¢;}jc; and some A4.

Answer: Trivial, the size is d.
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What the first steps give us quantitatively?

Quantitative Question:

What is the smallest Ay such that
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Quantitative Question:

What is the smallest Ay such that for any “John's decompositions”

m

Idg = > ciu; ® u; one can find an index set J of size d and
i=1

positive weights {¢;};e satisfying
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m

Idg = > ciu; ® u; one can find an index set J of size d and
i=1

positive weights {¢;};e satisfying

Idyg .
r}\d < J%-:l Ciuj ® uj < (]. aF )\d)Idd
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What the first steps give us quantitatively?

Quantitative Question:

What is the smallest Ay such that for any “John's decompositions”

m

Idg = > ciu; ® u; one can find an index set J of size d and
i=1

positive weights {¢;};e satisfying

Idyg .
r}\d < J%-:l Ciuj ® uj < (]. aF )\d)Idd

Answer or not:
... take the vectors by the “Dvoretzky—Rogers lemma”...
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John ellipsoid

1. K is a convex body in RY
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John ellipsoid

1. K is a convex body in RY

2. The John ellipsoid Jk of K is the maximal volume ellipsoid
contained within K

3. Let 0 be the center of Jk. Then

JkCKCd-Jg
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John condition

K C RY convex body.

John 48 (+ Ball'92)
Assume BY C K. TFAE:

1. B9 is the maximum volume ellipsoid contained within K

2. there are contact points ui, ..., un € bd B N bd K and
positive weights ci, ..., ¢y, such that

m m
Z ciu; =0 and Z cui ® u; = Idy
i=1 i=1
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Outline

Helly-type results
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Classical result

Helly'1923*

If the intersection of every d + 1 sets of a finite family of convex
subsets of R? is nonempty, then the whole family has a nonempty
intersection.
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Classical result

Helly'1923*

If the intersection of every d + 1 sets of a finite family of convex
subsets of R? is nonempty, then the whole family has a nonempty
intersection.

Reduction assumption: All sets in our family are half-spaces!

For v € R?\ {0},

Hv={p€Rd: <p,v>§1}
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Coarse approximation
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Coarse approximation

Reduction assumption: All sets in our family are half-spaces!

Quanlitative Question:

How many half-spaces (facets) must we retain to ensure that the
intersection forms a bounded polytope?

Helly-number: ~ Sometimes we need 2d half-spaces — Cube!

Quantitative Question:

Given a convex polytope P in R, can one choose at most m < 2d
facets of P in such a way that the volume of the intersection of
corresponding half-spaces is at most v, voly P.
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Results

Barany, Katchalski, Pach'82

Let F be a finite family of convex subsets of R.
Then one can find at most m < 2d sets Fi, ..., Fy, of F satisfying

volg(FiN---NFp) < l/dvoldﬂ]-"
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Results

Naszdodi'16

Let F be a finite family of convex subsets of RY.
Then one can find at most m < 2d sets Fy, ..., F, of F satisfying

volg (Fi N ---N Fp) < wvgvoly ﬂ]: (yd ~ led) .

Vg > dd/2
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Results

Nasz6di'16

Let F be a finite family of convex subsets of RY.
Then one can find at most m < 2d sets Fy, ..., Fy of F satisfying

volg (FLN -+ N Fp) < vgvoly ﬂ]—" <1/d ~ led) .

Vg > dd/2

Brazitikos'18

Let F be a finite family of convex subsets of RY.
Then one can find at most m < 2d sets Fy, ..., Fy of F satisfying

diam (FLN---NFp) < nddiamﬂf (77d ~ d11/2) _

Extensive use of the John ellipsoid and the Dvoretzky—Rogers...!
12 /20



Containment in a homothet

Do we need the John ellipsoid in the proofs?
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Containment in a homothet

Do we need the John ellipsoid in the proofs?

NO!
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Containment in a homothet

What do we really use?
1. Duality:

The polar S° of a set S € RY is the set

Soz{peRd o (p,x) <1 for all xES}
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Containment in a homothet

What do we really use?
1. Duality:

K:ﬂHV, = K® =conv{v; : i€l}
i€l

K C ﬂ H,, = K° D conv{v; : i€ J}
ieJcl

2. Double-sided inclusion:
ANeconv{v; : i€ J} D K°Dconv{y; : i€ J}

4

volg () Hy, <[A%volyK and diam () H,, < |A|diam K
ieJCl ieJCl
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Containment in a homothet

What do we really use?
1. Duality:

K—c=[\H,y, = (K—c)’=conv{v; : i€l}
i€l

K—cc () Hy, = (K—c¢)’Dconv{y; : i€ J}
ieJcl
2. Double-sided inclusion:

Aconv{v; : i€ J} D(K—¢)° Dconv{v; : i€ J}
3. “Good center” c:
K—cC—d(K-c¢)

The center of the John ellipsoid is a good center, but there
are many others!
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Containment in a homothet: Double-sided inclusion

Naszdodi and 122

Let S © RY be such that convS € —dconv S. Then there are
m < 2d and vq,..., Vv, € S such that

convS C Aconv{vi,...,Vm},

where A = —15d3.
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Containment in a homothet: Double-sided inclusion

A-HAK lemma [Almendra—Hernandez, Ambrus, Kendall'22]

Let S ¢ RY be such that convS C —d conv S. Then there are
m < 2d and vq,..., Vv, € S such that

convS C Aconv{vi,...,Vm},

where A = —3d2.

Vi,...,Vq form a maximum volume o-simplex, i.e.
max _volg conv{0, w1, ..., wg} = volgconv{0, v1,...,vq}
Wi,...,WgES
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(K* C >0C o N oy,
H

%

S sl T y=Ve [l i/ /L
oy,
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Outline

Open problems
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Extremal arrangement of half-spaces

Let {u1,...,u>y} be unit vectors in RY. Then there is a point in
the set

Fd]{x eRY : (u,x) <1}
i=1

with norm V/d.
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Extremal arrangement of half-spaces

Let {u1,...,u>y} be unit vectors in RY. Then there is a point in
the set

2d
ﬂ{x eR? : (u;,x) <1}
i=1

with norm v/d.

Follows from a theorem of Ball and Prodromou’09

Let ug, ..., Uy be unit vectors in RY. Then there is a point in the
set

2d
ﬂ{x cRY : | (ui, x) | < 1}
i=1

with norm \/g.
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Good center: Macbeath point

Macbeath region

Take a point p € K C RY, the Macbeath region M(K, p) is the set

M(K,p) = KN (=K +2p)
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Good center: Macbeath point

Macbeath region

Take a point p € K C RY, the Macbeath region M(K, p) is the set
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Let K be a convex body in R?. There is a unique point p
maximizing the volume of the Macbeath region M(K, p).
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Good center: Macbeath point

Macbeath region
Take a point p € K C RY, the Macbeath region M(K, p) is the set

M(K,p)=Kn(—K +2p)

Proposition

Let K be a convex body in R?. There is a unique point p
maximizing the volume of the Macbeath region M(K, p).

Macbeath point

The Macbeath point of K is the unique maximizer of
volg M(K, p).
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Good center: Macbeath point

Macbeath region

Take a point p € K C RY, the Macbeath region M(K, p) is the set

M(K,p)=Kn(—K +2p)

Macbeath point

The Macbeath point of K is the unique maximizer of
volg M(K, p).

Question:

Let p be the Macbeath point of a convex body K c R. Is it true
that

K—pc—d(K=-p)?
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Colorful versions

Qualitative result. Puzzle:

Let finite families 1, ..., Faq of convex sussets of R be such
that voly N F1 < 1,...,volg Foqg < 1.
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Colorful versions

Qualitative result. Puzzle:

Let finite families 1, ..., Faq of convex sussets of R be such
that voly N F1 < 1,...,volg Foqg < 1.
Then there is a “rainbow” selection of sets F1 € F1, ..., Fog € Fog

such that the volume of F; N --- N Fyy is bounded.

Quantitative result:

We don't know the Helly-number, i.e. the number of color classes!

The best we have 3d color classes (Damasdi, Foldvari, Nasz6di'21)!

G. Ivanov Coarse approximation 18 / 20



Log-concave functions

Functional Barany—Katchalski-Pach (Naszédi and 1'22)

Let f1,...,f, be upper semi-continuous log-concave functions on
RY. For every o C {1,...,n}, let f, denote the pointwise
minimum:

fo(x) = min{fi(x) : i € o}.
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Log-concave functions

Functional Barany—Katchalski-Pach (Naszédi and 1'22)

Let f1,...,f, be upper semi-continuous log-concave functions on
RY. For every o C {1,...,n}, let f, denote the pointwise
minimum:

fo(x) = min{fi(x) : i € o}.

Then there is a set o € {1,...,n} of at most 3d + 2 indices such
that

d _j2d
/Rd fo <1009 | fy oy

Problem:

We don’t know the Helly-number!
It is surely strictly less than 3d + 2
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Thank you!
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