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Introduction
● Fix a particle, a convex body K ⊂ R3. Instances of K of varying
size are randomly positioned and oriented in R3. This isotropic
system of particles is intersected with a plane.
● We wish to determine the particle size distribution given the
distribution of observed section areas.
● Generalization of the classical Wicksell’s corpuscle problem
(Wicksell 1925).

(a) 3D objects (b) 2D observations
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Introduction

● The particles have random sizes, a particle of size λ is equal to λK
up to rotation and translation. Let H denote the CDF of the size
distribution.

● We assume:
E(Λ) = ∫

∞

0
λdH(λ) < ∞.

● The integral equation relating H to the CDF of observed section
areas FA have already been derived under various assumptions. See
for example (Santaló and Kac 2004), (Ohser and Mücklich 2000),
(Beneš and Rataj 2004).
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Isotropic Uniformly Random (IUR) sections

● Let [K ] denote the set of all planes which intersect K . An IUR
plane hitting K is a plane T chosen uniformly at random from [K ].
The probability measure is the unique motion invariant measure on
the space of all planes, restricted to [K ].

● Introduction of IUR planes: Davy and Miles 1977.

● Let T be an IUR plane hitting K , define the CDF:

GK(z) ∶= P (vol2(K ∩T ) ≤ z) .

We call GK the section volume CDF.

● If a particle with size λ is hit by the plane, its random section area
is equal in distribution to the area of an IUR section of λK .
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Deriving the stereological integral equation

Lemma (Davy and Miles 1977)

Suppose that Q ⊂ R3 is a convex body and K ⊂ Q is another convex
body. Let T be an IUR plane hitting Q, then:

1 Hitting probability:

P(T ∩K ≠ ∅) =
b̄(K)

b̄(Q)
.

2 Conditional property: Given that T hits K, i.e. T ∩K ≠ ∅, T is an
IUR plane hitting K.

● Suppose the particles are contained in Q ∈ K3. If λK ⊂ Q and T is
an IUR plane hitting Q then:

P(T ∩ λK ≠ ∅) =
b̄(λK)

b̄(Q)
= λ

b̄(K)

b̄(Q)
.

The probability that a particle is sampled is proportional to its size.

5 / 21



Deriving the stereological integral equation

Lemma (Davy and Miles 1977)

Suppose that Q ⊂ R3 is a convex body and K ⊂ Q is another convex
body. Let T be an IUR plane hitting Q, then:

1 Hitting probability:

P(T ∩K ≠ ∅) =
b̄(K)

b̄(Q)
.

2 Conditional property: Given that T hits K, i.e. T ∩K ≠ ∅, T is an
IUR plane hitting K.

● Suppose the particles are contained in Q ∈ K3. If λK ⊂ Q and T is
an IUR plane hitting Q then:

P(T ∩ λK ≠ ∅) =
b̄(λK)

b̄(Q)
= λ

b̄(K)

b̄(Q)
.

The probability that a particle is sampled is proportional to its size.

5 / 21



The stereological integral equation
● Consider the following two facts:

● Hb is the size distribution of particles hit by the section plane.

Hb
(λ) =

∫
λ
0 xdH(x)

∫
∞

0 xdH(x)
.

● Given that a particle of size λ appears in the section plane, its area
is distributed according to GλK .

● As a consequence:

FA(a) = ∫
∞

0
GλK(a)dH

b
(λ) =

1

E(Λ) ∫
∞

0
GλK(a)λdH(λ).

● Note that GλK(z) = GK(z/λ
2). In other words, if Z ∼ GK , then

Zλ2 ∼ GλK . Hence,

FA(a) =
1

E(Λ) ∫
∞

0
GK (

a

λ2
)λdH(λ).
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Separating shape and size

Lemma (Jongbloed, Vittorietti, and TJ 2023b)

Consider a distribution function H with length-biased version Hb.
Suppose Z ∼ GK and Λb ∼ H

b with Z and Λ2
b independent. Set

A = ZΛ2
b. Then, A ∼ FA, and FA,GK and Hb are related via:

FA(a) = ∫
∞

0
GK (

a

λ2
)dHb

(λ).

Proof.

Let X ,Y ,Z be non-negative random variables, with CDF FX ,FY and
FZ respectively. If X = YZ with Y and Z independent, then their
distribution functions are related via:

FX (x) = ∫
∞

0
FY (

x

z
)dFZ(z).

Substituting P(Λ2
b ≤ λ) for H

b(λ) = P(Λb ≤ λ) yields the result.
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The Mellin-Stieltjes transform

Definition (Mellin-Stieltjes transform)

Given a non-negative random variable X , with CDF F , the
Mellin-Stieltjes transform of X is defined as:

MX (s) = E(X s−1
) = ∫

∞

0
x s−1dF (x),

for s ∈ C, whenever the integral is absolutely convergent.

● Note, for non-negative independent random variables X and Y :

MXY (s) = E ((XY )s−1) =MX (s)MY (s),

whenever these expressions are finite.

● If ∫ x
c−1dF (x) < ∞ for c ∈ R, thenMX (c + it) < ∞ for all t ∈ R.
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The strip of analyticity

● Define:
St(α,β) ∶= {s ∈ C ∶ α <R(s) < β}

St[α,β] ∶= {s ∈ C ∶ α ≤R(s) ≤ β}.

● If we find α < β such that the Mellin transform of X converges
absolutely on St[α,β], thenMX is analytic on St(α,β)
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Identifiability and inversion formula

Theorem (Jongbloed, Vittorietti, and TJ 2023b)

Suppose there is a CDF H such that FA, GK and H are related via:

FA(a) =
1

E(Λ) ∫
∞

0
GK (

a

λ2
)dH(λ). (1)

1 If ∫
∞

0 z−αdGK(z) < ∞ for some α > 0, then there is only one
distribution function H on (0,∞) satisfying (1).

2 Assume ∫
∞

0 x1+δdH(x) < ∞, for some δ > 0. Then, there is only
one such distribution function H on (0,∞) satisfying (1).

● Let Z ∼ GK and A ∼ FA. If one of the conditions is satisfied and Hb

is continuous, there exists a c ∈ R such that:

Hb (
√
x) = lim

T→∞

1

2πi ∫
c+iT

c−iT
−
MA(s)

MZ(s)

x−s+1

s
ds, x ≥ 0.
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Inversion formula proof sketch

● Recall, letting A ∼ FA, Z ∼ GK and Λb ∼ H
b with Z and Λb

independent we have:

A
d
= ZΛ2

b.

● Due to the moment conditions we have for s ∈ St(max{1−α,1},1):

MA(s) =MZ(s)MΛ2
b
(s).

● Let c ∈ (max{1 − α,1},1). Since analytic functions only have
isolated zeros,MΛ2

b
(c + it) =MA(c + it)/MZ(c + it) for almost all

t ∈ R.
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Inversion formula proof sketch

● Assuming Hb is continuous, the Mellin inversion theorem (Kawata
1972) yields:

Hb (
√
x) = P (Λ2

b ≤ x) = lim
T→∞

1

2πi ∫
c+iT

c−iT
−MΛ2

b
(s)

x−s+1

s
ds

= lim
T→∞

1

2πi ∫
c+iT

c−iT
−
MA(s)

MZ(s)

x−s+1

s
ds

for x ≥ 0.

● H can be retrieved via:

H(λ) =
∫
λ
0

1
x dH

b(x)

∫
∞

0
1
x dH

b(x)
.
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Absolute continuity of GK

● Let T be an IUR plane hitting K , GK is given by:

GK(z) ∶= P (vol2(K ∩T ) ≤ z) .

● Suppose GK has a Lebesgue density gK , supported on (0, amax).
Then, FA is absolutely continuous with density:

fA(a) =
1

E(Λ) ∫
∞

√
a

amax

gK (
a

λ2
)
1

λ
dH(λ).

● Relevance for statistical inference: the likelihood is well-defined.
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Parameterization of IUR planes

Sn−1
+
= {(x1, . . . , xn) ∈ Rn

∶ ∥x∥ = 1, xn ≥ 0}.

Tθ,s = {x ∈ Rn
∶ ⟨x , θ⟩ = s}, (2)

Definition (IUR plane)

An IUR plane T hitting a fixed K ∈ Kn, n ≥ 2, is defined as T = TΘ,S

where (Θ,S) has joint probability density, fK ∶ S
n−1
+
×R→ [0,∞) given

by:

fK(θ, s) =

⎧⎪⎪
⎨
⎪⎪⎩

1
µ([K]) if K ∩Tθ,s ≠ ∅

0 otherwise,

with Tθ,s as in Eq. (2) and

µ([K ]) = ∫
Sn−1
+

∫

∞

−∞

1{K ∩Tθ,s ≠ ∅}dsdθ = σn−1 (S
n−1
+
) b̄(K).
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Brunn’s theorem

● Recall the following classical result:

Theorem (Brunn)

Let K ⊂ Rn be a convex body, n ≥ 2. Fix θ ∈ Sn−1. The function
fθ ∶ R→ [0,∞) given by:

fθ(s) = voln−1(K ∩Tθ,s)
1

n−1 ,

is concave on its support.
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Absolute continuity of GK

Theorem (Jongbloed, Vittorietti, and TJ 2023a)

Let K ⊂ Rn be a convex body, n ≥ 2. For θ ∈ Sn−1
+

, define the function
fθ ∶ R→ [0,∞) by:

fθ(s) = voln−1(K ∩Tθ,s)
1

n−1 .

If fθ has a unique maximum and is continuous on R for almost all
θ ∈ Sn−1

+
, then GK is absolutely continuous with respect to Lebesgue

measure.

● Condition is satisfied for strictly convex bodies.
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Main idea

● Writing GK as a mixture distribution, conditioning on a fixed
direction Θ = θ. With (Θ,S) ∼ fK and fΘ the marginal density of
Θ.

GK (z
n−1) = P (voln−1(K ∩TΘ,S))

1
n−1 ≤ z)

= ∫
Sn−1
+

P (fθ(S) ≤ z ∣Θ = θ) fΘ(θ)dθ.

● Conditional on Θ = θ we have S ∼ U(−hK(−θ),hK(θ)).

● For almost all θ ∈ Sn−1
+

, the CDF

z ↦ P (voln−1(K ∩TΘ,S)
1

n−1 ≤ z ∣Θ = θ) .

is continuous on R and convex on its support.

● Fubini’s theorem yields the desired result.
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Convex polytopes
● For convex polytopes the function fθ does not in general have a
unique maximum.

Lemma

Let P ⊂ Rn be a full-dimensional convex polytope, n ≥ 2. Fix θ ∈ Sn−1
+

and define the function fθ ∶ R→ [0,∞) by:

fθ(s) = voln−1(P ∩Tθ,s)
1

n−1 .

Suppose fθ attains its maximum on the entire interval [s−, s+], with
s− < s+. Then, any plane Tθ,s with s ∈ [s−, s+] intersects the same edges
of P and these edges are parallel.

Theorem (Jongbloed, Vittorietti, and TJ 2023a)

Let P ⊂ Rn be a full-dimensional convex polytope, n ≥ 2. Let GP be its
section volume CDF. Then, GP is absolutely continuous.
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Main idea of proof
● For ”non-maximal” sections we proceed as before.

● In general, fθ attains its maximum in the entire interval
[s−(θ), s+(θ)], possibly with s−(θ) = s+(θ). Define:

D ∶= {θ ∈ Sn−1
+
∶ s+(θ) > s−(θ)} .

● D may be written as a disjoint union: D = ⋃k
i=1Di .

For any θ ∈ Di any plane Tθ,s with s ∈ [s−(θ), s+(θ)] intersects the
same parallel edges of P.

● Take ϕi ∈ S
n−1
+

collinear to the edge directions corresponding to Di .
For θ ∈ Di there exists a vi > 0 such that:

voln−1(P ∩Tθ,s) = max
t∈R

voln−1(P ∩Tθ,t) =
vi

∣⟨θ, ϕi ⟩∣
.

● If we draw Θ ∼ U(Sn−1), then the random variable ∣⟨Θ, ϕi ⟩∣ has a
Lebesgue density.
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Final remark

● Statistical results: the identifiability result as well as the absolute
continuity of GK for a large class of convex bodies was used to
define a non-parametric maximum likelihood estimator of Hb,
which is proven to be strongly consistent. More details in
Jongbloed, Vittorietti, and TJ 2023b

Thank you for your attention!
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