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» ny : 0K — S" ! Gauss map; H,_1(K,-) Gauss—Kronecker curvature.

» ro(K,x) is the centro-affine invariant curvature that is related to the volume of a
centered ellipsoid &,(K, x) that osculates the boundary 0K at x, i.e.,
Vol(&,(K,x))\ > Hp1(K
o) = (FRElE ) T Ha
Vol(B%) (ng(x),x)nt!
» (' is the centro-affine invariant cone-volume measure on 0K that is absolutely
continuous with respect to the Hausdorff measure H"~! with density

dCx
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(%) = (g (x), %).



Blaschke's affine surface area
» K C R™ a convex body of class Ci that contains the origin in the interior
Blaschke’s affine surface area:

asy (K) = / H,_1 (K, x) ™1 1™ (dx) = / koK, %)™ Cie(dx)
0K 0K

» Extension of as; to convex bodies K without curvature conditions: Petty (1985),
LeichtweiB3 (1988, 1989), Schiitt & Werner (1990), Lutwak (1986, 1991),
Schitt (1993), Dolzmann & Hug (1995), Hug (1996).



Blaschke's affine surface area

» K C R™ a convex body of class Ci that contains the origin in the interior

Blaschke’s affine surface area:

asy (K) = / H,_1 (K, x) ™1 1™ (dx) = / koK, %)™ Cie(dx)
0K 0K

» Extension of as; to convex bodies K without curvature conditions: Petty (1985),
LeichtweiB3 (1988, 1989), Schiitt & Werner (1990), Lutwak (1986, 1991),
Schitt (1993), Dolzmann & Hug (1995), Hug (1996).

> as; is a upper semi-continuous and equi-affine invariant valuation.
Characterization of all such valuations by Ludwig & Reitzner (1999).



Blaschke's affine surface area

» K C R™ a convex body of class Ci that contains the origin in the interior

Blaschke’s affine surface area:

asy (K) = / H,_1 (K, x) ™1 1™ (dx) = / koK, %)™ Cie(dx)
0K 0K

» Extension of as; to convex bodies K without curvature conditions: Petty (1985),
LeichtweiB3 (1988, 1989), Schiitt & Werner (1990), Lutwak (1986, 1991),
Schitt (1993), Dolzmann & Hug (1995), Hug (1996).

> as; is a upper semi-continuous and equi-affine invariant valuation.
Characterization of all such valuations by Ludwig & Reitzner (1999).

» Functional analogs asgs)(f) for s-concave functions f of class C? were defined by
Artstein-Avidan, Klartag, Schiitt, Werner (2012) and as) () for log-concave
functions ¢ by Caglar & Werner (2014, 2015) and Caglar, Fradelizi, Guédon,
Lehec, Schiitt, Werner (2016).
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» as, is a SL(n)-invariant valuation on all convex bodies that is positively
homogeneous of degree g = nn+p For p = n, as,, is GL(n)-invariant and often
called the centro-affine surface.
» For p >0, as, € [0,+00) is upper semi-continuous and ¢ € (—n,n) and
for p <0, p# —n, as, € (0,+0o0] is lower semi-continuous and |gq| > n.



General affine surface areas

» K C R™ a convex body that contains the origin in the interior

Lutwak’s L, affine surface area: as,(K) = / ko(K, x)ﬁ_p Ck (dx) for p > —n.
0K

Theorem (Ludwig & Reitzner, 2010). (Ann. of Math.)
® is a upper semi-continuous and SL(n)-invariant valuation of homogeneous degree

q € [-n,n] if and only if

{forqzo: d = Cy+ Chas, | for ¢ =mn: b = CpVol

for |[g| <n: ®=Cjas, for g=—n: ®(K) = CyVol(K°)

for some Cp,C1 € R, 1 >0and p >0s.t. g = ”Z_J_r%-

2 2 2
—n —”( —nTl) 0 "( —m) n "<1+T+1) q
4 - T + v by
o )‘Snz asSn, K € l - ”77
Vol(K°) (K% 7%’”((1()0)7 Y Vol T3
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» K C R™ a convex body that contains the origin in the interior
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» Further generalizations to Orlicz affine surface areas were introduced and
characterized as natural SL(n)-invariant semi-continuous valuations by Ludwig
(Adv. Math., 2010) and Ludwig & Reitzner (Ann. of Math., 2010). A Hadwiger
type characterization of upper semi-continuous centro-affine invariant valuations
was established Haberl & Parapatits (JAMS, 2014).



General affine surface areas

» K C R™ a convex body that contains the origin in the interior

Lutwak’s L, affine surface area: as,(K) = / ko(K, x)n%p Ck (dx) for p > —n.
0K

» Further generalizations to Orlicz affine surface areas were introduced and
characterized as natural SL(n)-invariant semi-continuous valuations by Ludwig
(Adv. Math., 2010) and Ludwig & Reitzner (Ann. of Math., 2010). A Hadwiger
type characterization of upper semi-continuous centro-affine invariant valuations
was established Haberl & Parapatits (JAMS, 2014).

» The affine surface area and its relatives also appear naturally in the asymptotic
optimal and random polytopal approximation of convex bodies (volume, number
of vertices, edges, ...): Barany, Boroczky, Buchta, Calka, Chatterjee, Fodor,
Gusakova, Hoehner, Hug, Kabluchko, Lachiéze-Rey, Larman, Ludwig,
Peccati, Reitzner, Rosen, Schneider, Schulte, Schiitt, Thale, Vu, Werner,
Yukich, ... and many more!
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Definition. For 6 > 0 the floating body of K is defined by (Bardny & Larman, 1988)

(Schiitt & Werner, 1990)

Fok =({K nH:Vol(K n H*) < 5}

» H*. . closed half-spaces
> Vol...Lebesgue measure KnHt

> lim5_>0+ faK = fQK =K

> Fs is equi-affine covariant, i.e.,
Fs(AK +x) = A(FK) +x K
for A € SL(n) and x € R"

FsK



Volume Derivative of the Floating Body

» The floating body construction can be traced back into the 19th century to
Dupin. Blaschke (1920s) used a version of Dupin’s floating body to introduce
the affine surface area as; which was later generalized by LeichtweiB (1986).
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> If K is a convex body that contains the origin in the interior, the polar body of K
is defined by K° = {y € R" : max{(y,x) : x € K} < 1}.
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> If K is a convex body that contains the origin in the interior, the polar body of K
is defined by K° = {y € R" : max{(y,x) : x € K} <1}.

» If K contains the origin in the interior we can conjugate the floating body with
polarity and define the centro-affine covariant operator 75 K = (F5K°)°.

» F5K D K and limg g+ 73K = K and F§(AK) = A(F;K) for all A € SL(n).



Volume Derivative of the Floating Body

» The floating body construction can be traced back into the 19th century to
Dupin. Blaschke (1920s) used a version of Dupin’s floating body to introduce
the affine surface area as; which was later generalized by LeichtweiB (1986).

Theorem (Schiitt & Werner, 1990). (Math. Scand.)
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Theorem (Meyer & Werner, 2000; Werner & Ye, 2008). (both Adv. Math.)
I(FSK) — Vol(K

lim Voli7; )2 Vol(K) = Cn aS_p/(n+2) (K) = Cn/ Ko(K, X)_"%H Cr (dx),

§—0+ §nti oK

where K is a convex body of class C_2F that contains the origin in the interior.




Weighted Floating Bodies

Definition (Werner, 2002). The p-weighted floating body of a convex body K C R"
is Ff K =({KNH :Vol?(KNH") <6}

v

Lemma. 7K = {x € K : mcdg ,(x) > d} is the d-superlevel set of
the minimal cap density function medg ,(x) = min{Vol?(K N H"):x € H*}.

» ¢ a strictly positive continuous function; Vol¥(A) = / o(x) A(dx).
A
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Weighted Floating Bodies

Definition (Werner, 2002). The p-weighted floating body of a convex body K C R"
is FfK =({{KNH :Vol?(KNH") < 6}

Lemma. 7K = {x € K : mcdg ,(x) > d} is the d-superlevel set of
the minimal cap density function medg ,(x) = min{Vol?(K N H") :x € H'}.

Lemma. Let K C R™ be a convex body. Then:

i) If ¢ < @, then FYK C FPK.
If L C K is another convex body, then 7L C F/K.

i) If K is of class O2, then ||A(K, ") — h(F{K, )]s < CO7T. Moreover,

hK,u) — h(FK

lim ( ,ll) 2(f§ ,U)
6—0+ St
where x € 0K is the uniquely determined point with outer unit normal u.

= Cn@(x)i%“anl(K, X)%ﬂ, for all u € S*1




Volume Derivative of the Weighted Floating Bodies
Extension of the uniform case, ¢ = ¢ = 1, established by Schiitt & Werner (1990):
Theorem(B., Ludwig, & Werner, 2018). K C R™ a convex body.  (trans Amer. Math. Soc)

b _ P 1 2
i YRV TOTETED _ o [ 06,3 #7000 ) Coc ().
oK

6—0+ S+t




Volume Derivative of the Weighted Floating Bodies

Extension of the uniform case, ¢ = ¢ = 1, established by Schiitt & Werner (1990):

Theorem(B., Ludwig, & Werner, 2018). K C R™ a convex body.  (trans Amer. Math. Soc)

1(K) — Vol (FfK
i VU YOI _ [ (0 3 7)1 00) e
50+ S oK

Theorem(B. & Werner, 2023%). If K a convex body of class C% that contains the
origin in the interior, then

1Y(FP°K) — Vol¥ (K
i YIS VOO o [0, 060) () ),
6—0+ O+t 0K

where x° € JK° is the polar point determined by x € 9K such that (x°,x) = 1.

» Extends uniform case by Meyer & Werner (2000) and Werner & Ye (2008).
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can be model on R"™ such that geodesics in the space of constant curvature are
affine line segments in R™.

Beltrami (1900), Cartan (1930): a Riemannian metric is projective if and only if
it has constant curvature.
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The classical spaces of constant curvature (e.g. spherical space, hyperbolic space)
can be model on R"™ such that geodesics in the space of constant curvature are
affine line segments in R™.

Beltrami (1900), Cartan (1930): a Riemannian metric is projective if and only if
it has constant curvature.

The gnomonic projection is a diffeomorphism from the half-sphere model
St :={ueR"™ : |lufa =1 and u,41 > 0} or the hyperbolid model
H" := {ueR™ :uou=—1and u,;; >0} to R" given by
1
g(u) = ﬁ(uh---,un)-

It maps geodesics of S} and H" to affine line segments in R".

uou=uf+...+u2—u? ;| .. indefinite inner product of the
Lorentz—Minkowski space R™! = (R"*1 o).
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The classical spaces of constant curvature (e.g. spherical space, hyperbolic space)
can be model on R"™ such that geodesics in the space of constant curvature are
affine line segments in R™.

Beltrami (1900), Cartan (1930): a Riemannian metric is projective if and only if
it has constant curvature.

The gnomonic projection is a diffeomorphism from the half-sphere model
St :={ueR"™ : |lufa =1 and u,41 > 0} or the hyperbolid model
H" := {ueR™ :uou=—1and u,;; >0} to R" given by

1
g(u) = ——(u1,...,up).
Un+1 ]
It maps geodesics of S} and H" to affine line segments in R".

In this way we can identify a spherical or hyperbolic convex body K with the
Euclidean convex body K := g(K) C R™ and the spherical or hyperbolic Lebesgue

measure in R" is expressed by Vol® = Vol?s, where ¢.(x) = (1 + 5Hx||%)7n7+1

with € = 41 in the spherical case and € = —1 in the hyperbolic case.



Dual Convex Body / De Sitter Convex Bodies

» The dual body of spherical convex body K is defined by

K :={veS§S":(u,v)>0forallue K} = m H™(u).
uck

S g

—K*



Dual Convex Body / De Sitter Convex Bodies

» The dual space of H" is the de Sitter space dS} := {fu € R"" :uou=1}.
The dual body of a hyperbolic convex body K or a de Sitter convex body L is

defined by
K*:={vedSf:uov<Oforallue K} = m H(u),
uck
L*:={ueH":uov<O0forallvel}= ﬂH+(v).
velL

H(v)

€n+1 H"




Volume of the Floating Body in Spaces of Constant Curvature
Theorem(B. & Werner, 2016/2018). Let K be a spherical, hyperbolic or de Sitter

convex body. (Adv. Math. / JDG)
Vol*(K) — Vol (Fi K

lim YOUU) = VOP(FSK) [ e (g, u) T Vol (du) =: o Q5 (K.

0% dntt 0K

» Voljy ... (d — 1)-dimensional Hausdorff measure restricted to 0K
= surface area measure of 0K

> HE |(K,-) generalized Gauss—Kronecker curvature of 0K as a hypersurface.




Volume of the Floating Body in Spaces of Constant Curvature
Theorem(B. & Werner, 2016/2018). Let K be a spherical, hyperbolic or de Sitter

convex body. (Adv. Math. / JDG)
& 15 EK

lim Vol'(K) = YO Fok) _ cn/ 1(K,u) n+1 Vol i (du) =: ¢, Qf (K).

6—0t Snt+i

HZ

ds2



Volume of the Floating Body in Spaces of Constant Curvature
Theorem(B. & Werner, 2016/2018). Let K be a spherical, hyperbolic or de Sitter

convex body. (Adv. Math. / JDG)
Vol*(K) — Vol*(F; K

lim YOLK) = VO (F5 K —cn/ (K, u) T Vol (du) =: ¢, O (K).

6—0t 5n+1

Theorem(B. & Werner, 2023%). Let K be a spherical, hyperbolic or de Sitter

convex body of class C%. Then
g £,k

lim Vol*(F; K \ K) Cn/

d—0t 5n+1

T Vol§p (du) =: ¢, Q° _» (K).

n+2

> F;"K = (F;K*)*... floating body conjugated by duality mapping



Space Limits 1/3

Theorem(B. & Werner, 2016/2018). K be a spherical, hyperbolic or de Sitter
convex body. (Adv. Math. / JDG)

€ o (e
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oK

6—0t 5,%1




Space Limits 1/3

Theorem(B. & Werner, 2016/2018). K be a spherical, hyperbolic or de Sitter
convex body. (Adv. Math. / JDG)

: . E( Te
. Vol*(K') — Vol*(F5 K) _ Cn/ H: (K, u)n+r1 Vol (du) =: ¢, Q7 (K).
0K

6—0t 5,%1

» Let Sp™(\) be the space form of constant curvature A € R.

Theorem(B. & Werner, 2018). K C Sp™(\) a convex body. (JDG)
MK NFRK) _

lim VoI'(K) — Vol'(F / 1 (K, u) n+1 Vol) i (du) =: ¢, Q) (K).

d—0t 5n+1




Space Limits 1/3

Theorem(B. & Werner, 2016/2018). K be a spherical, hyperbolic or de Sitter
convex body. (Adv. Math. / JDG)

1 _ 1 ( Fe
lim YOLUK) = VoI(F5K) _ / HE_ (K, u) 7T Vol (du) =: ¢ 05 (K).
0K

6—0t 5,%,.1

» Let Sp™(\) be the space form of constant curvature A € R.

Theorem(B. & Werner, 2018). K C Sp™(\) a convex body. (JDG)
MK NFRK) _

lim YO (K) = Vol'(F / (K, u) ™ Vol (du) =: ¢, Q) (K).

6—0+ 5n—+1

» Moreover, if K C R" is fixed, then

lim ONE) = as1 (K) = / H, 1 (K, %)™ Vol;=(dx) = / (K, %) 7 O (dx)
A—0 OK oK

Florian Besau, TU Wien
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Space Limits 2/3
Theorem(B. & Werner, 2023"‘). K € Sp™(\) a convex body of class C%.
ey YO F K K) - VoK) e, /

oK

—0t 6 n+1

)~ 7 Vol (du).

> We see the duality * as a mapping between Sp™(\) — Sp™(1/A) for A > 0, and
between Sp™(\) and Sp7(1/A) for A < 0.
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Theorem(B. & Werner, 2023"‘). K € Sp™(\) a convex body of class C%.
ey YO F K K) - VoK) e, /

oK

—0t 6 n+1

)7 Vol) (du).

Corollary. Let K C R" be a convex body of class 02 Then, for §) = kp_ 1)\n+15
)1\111%]“7-"9;[( =7,'K = {x € R" : |Vi(conv(K,x)) — V4(K)| < 6}.
_>

> Ig/l is a special case of the separation body introduced by Schneider (2020) and
can also be seen as aVj-illumination body introduced by Werner (1994).



Space Limits 2/3
Theorem(B. & Werner, 2023"‘). K € Sp™(\) a convex body of class C%.

1)\ )\-,* 1)\ @
lim YO (F5" K) = Vo = / 7 Vol) (du).
6—0t Sn+t OK

Corollary. Let K C R"™ be a convex body of class C’i. Then, for §) = f@n_l)\nTﬂé,
/l\ir% ]:5\;*? =7,'K = {x € R" : |Vi(conv(K,x)) — V4(K)| < 6}.
_>
%7 _ T
Moreover: lim Vol(Zs K)2 Vol(K)
§—0t Sntt

—d, / H, (B, %) 7 Volo(dx). (o)
0K

V.

> Zg/l is a special case of the separation body introduced by Schneider (2020) and
can also be seen as aVj-illumination body introduced by Werner (1994).

» (©) was communicated to Schneider by Olaf Mordhorst.



State of the Art

1 1
o ()T avolg o ()7 T avelg

a a

S™, H", dSP[A = e = +1] : @ @
Sp"(\), SpT (A # 0] @Qi @

1 1 1
H, _1(K)7+T dvol f H,_1(K)” 7+1 dvol f K)nFT dc
fBK n—1(K) olok ot 1(K) olgk BKNO( ) K

1
= n+1
) o) T ack
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1
= n+1
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A Notion of Polarity Dependent on a Fixed Point

» The duality * as a mapping from Sp™(\) to Sp"(1/)), respectively Sp7(1/A),
does not depend on a fixed point. Thus it is no surprise that in the limit A — 0
we obtain a translation invariant curvature measure.



A Notion of Polarity Dependent on a Fixed Point
» The duality * as a mapping from Sp™(\) to Sp"(1/)), respectively Sp7(1/A),
does not depend on a fixed point. Thus it is no surprise that in the limit A — 0
we obtain a translation invariant curvature measure.

Definition. For A # 0 and e € Sp™ () fixed we consider the e-polarity operator from

Sp™(A) to Sp™ () that is defined for a convex body K that contains e in the interior
(and is contained in the open half space around e if A > 0) by

. )\L

= GA(K™), where G2 (u) = WW for v = )\< e)

+(1-=Xe A>0
+(1+XNe A<O0

uoe

» For A =¢ = =1 we have GZ(u) =u and K¢ = K*.



A Notion of Polarity Dependent on a Fixed Point
» The duality * as a mapping from Sp™(\) to Sp"(1/)), respectively Sp7(1/A),
does not depend on a fixed point. Thus it is no surprise that in the limit A — 0
we obtain a translation invariant curvature measure.

Definition. For A # 0 and e € Sp™ () fixed we consider the e-polarity operator from

Sp™(A) to Sp™ () that is defined for a convex body K that contains e in the interior

(and is contained in the open half space around e if A > 0) by

v Aag T 1 —XAe A>0
for v = ’

—_1 v
VIAL IV AL 4 (1+XNe A<O0

uoe

K® := G3(K*), where G2 (u)

» For A =¢ = =1 we have GZ(u) =u and K¢ = K*.
» Conjugating the A-floating body in Sp"()\) gives: F(;A’eK = (FPK®)e.



Space Limits 3/3

Theorem(B. & Werner, 2023%). K € Sp”()) a convex body of class C2 that
contains e in the interior. Then

. VolMFMK) — VoMK H) 4 (K, u) ) ™
i CLETOTRE)_ (W) 72 (K ) Vol (du),

6—0F §n+1

:Qi n (K)
n+2

A + [tany dy(e, H(K,u))]?
1+ A[tany dy (e, H(K,u))]?

where f2 (K, u) \/’

» d) geodesic distance on Sp™(\); H(K,u) hyperplane tangent to K at u € 0K.

tan(vAa)

T A > O,
> tanya = « A=0,

tanh(v/—\a)

T A < O,



Space Limits 3/3

Theorem(B. & Werner, 2023%). K € Sp”()) a convex body of class C2 that
contains e in the interior. Then

1
VoMK ) = Vol (K) Hp i (K,u) \ ™ \
61_1>0+ 5n+1 = / W f& (K, u) Volgg (du),
:Qi n (K)
n+2

A + [tany dy(e, H(K,u))]?
1+ A[tany dy (e, H(K,u))]?

where f2 (K, u) \/’

» For \=e=+1: f2=1and Q/\en = () . isindependent of e.

n—+2 n+2



Space Limits 3/3

Theorem(B. & Werner, 2023%). K € Sp”()) a convex body of class C2 that
contains e in the interior. Then

1
. VolMF K )= Vol (K) H) (K,u)\ ™ )
L A R
:Qi n (K)
n+2

A + [tany dy(e, H(K,u))]?
1+ A[tany dy (e, H(K,u))]?

where f2 (K, u) \/’

» For \=e=+1: f2=1and Q/\en = () . isindependent of e.

n+2 n+2
» Moreover, if K C R" is fixed, then

lim 0N, (K) = as_ o (K) = / k(K x) 7 C(dx)

A—0 n+2 n+2 OK




State of the Art

1 1
o ()T avolg o (K) 7T avelg

a

S, H", dSP[A = € = +1] : @

S

Sp"(A), SpE (V[ # 0] @ o)

1 1 1
H, _1(K)7+T dvol f H,_1(K) 71 dvol f K)nFT dc
fBK n—1(K) olok ot 1(K) olgk BKNO( ) K

1
= n+1
) o) T ack

a




Properties of weighted L,-affine surface area

Theorem(B. & Werner, 20237%). For the (¢, v)-weighted surface area, defined by
Q_n (K;p,9)= / ’io(Kax)_";"'l@(Xo)_"L“'l’L/J(X) Ck (dx), we have:
oK

n+2

» For A € SL(n) we have that

Q_#Q(AK;QOOAT?wOA_) Q_ ( ;0,v)




Properties of weighted L,-affine surface area

Theorem(B. & Werner, 2023%). For the (¢, )-weighted surface area, defined by
Q__» (K;p,9) &O(K,x)_n;ﬂcp(xo)_niﬂw(x) Ck(dx), we have:

- n+2

~ Jox
» For A € SL(n) we have that

. T -1y _ .
SZ—#J;Q(AKﬂOoA JPOA )_SZ—#J;Q(K7SD7'¢)

» [t is a valuation and lower semi-continuous on convex bodies of class C_% that
contain the origin in the interior. [Schiitt, 1994 / Ludwig, 2001 + 2010]




Properties of weighted L,-affine surface area

Theorem(B. & Werner, 2023%). For the (¢, )-weighted surface area, defined by
Q__» (K;p,9) &O(K,x)_#lcp(xo)_%ﬂw(x) Ck(dx), we have:

- n+2

oK

» For A € SL(n) we have that

. T -1y _ , .
SZ_#;Q(AK,QOOA a¢°A )*Sz—ﬁ(K7¢7w)

» It is a valuation and lower semi-continuous on convex bodies of class C_% that

contain the origin in the interior. [Schiitt, 1994 / Ludwig, 2001 + 2010]
» For a convex body K of class CEL that contains the origin in the interior we have
the polarity formula: [Hug, 1996]

O (Kio) = [ rolK° 3P 4(57) o) Cr(dy).

_n
n—+2




Proof: Volume of Floating Body conjugated by Polarity

Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class Ci that
contains egy1 in the interior and/or is contained in the interior of H™ (e4;1).

1E(FS"K\ K Vol¥s (F7*°K) — Vol?s (K
lim Vo (}-52 \ K) lim O (]'_5 ) ol¥s(K)

6—0t S+t d—0t 5%

Lemma. g(K*) = ~<K". Thus g(F; 'K) = 7K.




Proof: Volume of Floating Body conjugated by Polarity

Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class Ci that
contains egy1 in the interior and/or is contained in the interior of H™ (e4;1).

(F"K\ K Vol?s (F7°K) — Vol?: (K
i VLGS ENK) Vol (7 R) Vol ()

6—0t S+t d—0t dnt1

_ 1 — —2
e, / ()t LRG0T
o% 1+ x| %




Proof: Volume of Floating Body conjugated by Polarity

Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class Ci that
contains egy1 in the interior and/or is contained in the interior of H™ (e4;1).

lim Vole(]-"(; K\ K ) ~ lim Vol¥e (Ffs’of) — Vol¥s (K)
im
6—0+ 5n+1 5%0+ 5,%1
_ 1 —2
— o [ ko377 Lt etng() )7 )
oK 1+ elx|3] > 3
Theorem (B. & Werner, 2018). (JDG)

If x € OK is a normal boundary point, then

B x)mh (T sy, | LT El[B
& K = g, (K, x)n+l , and
n—l( ,X) K ( X) \/1+5<n?(x),x>2 an
dVolg \/1 + e(ng(x), x) 2
dCF (1 +ellx]l2 )”/2




Proof: Volume of Floating Body conjugated by Polarity

Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class Ci that
contains egy1 in the interior and/or is contained in the interior of H™ (e4;1).

oy VoI (FS *K\K YOI (LR — Vol*e(K)
im
6—0+ 5n+1 5%0+ 5,%1
_ 1 —2
—Cn/ Ko(K, X)fi [+ (g (x). X> ’C'?(dX)
Pl g



	p-Affine Surface Area
	Floating Bodies
	Weighted Floating Bodies
	Floating bodies in Spaces of Constant Curvature
	Space Limits
	Secret Slides

