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The classical Minkowski Problem

I In this talk, K is always a convex body (with non-empty interiors) in Rn,
and h = hK means its support function.

I Suppose h ∈ C2
+(S

n−1). Then,

x = ∇h(v) + h · v

can be viewed as the reverse Gauss map, and

∇2h+ hI

can be viewed as the reverse Weingarten map from v⊥ to Tx∂K, and hence,

det
(
∇2h+ hI

)
(v)

is the reciprocal Gauss curvature at x.

I The Minkowski problem (smooth version) asks to construct a convex body
K whose Gauss curvature is the prescribing spherical function f , that is

G(x) = f(νK(x)), x ∈ ∂K.

What are the both sufficient and necessary conditions on f?
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The classical Minkowski Problem

I Monge-Ampère equation on Sn−1. Given positive f ∈ C(Sn−1), find con-
vex solution h : Sn−1 → R to

det
(
∇2h+ hI

)
= f.

Minkowski, Aleksandrov, Fenchel-Jessen, Cheng-Yau, Nirenberg, Pogorelov, Caffarelli...

I However, the classical solution of the above PDE is only suitable for char-
acterizing regular convex bodies (smooth and strictly convex).



The classical Minkowski Problem (Prescribing measure problem)

I Reverse Gauss image: For a Borel ω ⊂ Sn−1

ν∗K(ω) := {x ∈ ∂K : ∃v ∈ ω, such that v is an outer normal of ∂K at x}.

I Surface area measure:

S(K,ω) := Hn−1 (ν∗K(ω)) , Borel ω ⊂ Sn−1.

I The Minkowski problem (general version). Given a Borel measure µ on the
sphere Sn−1, is it possible to construct a convex body K such that

S(K, ·) = µ?

I Discrete Minkowski problems. Minkowski (1897).
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Christoffel-Minkowski problems (and area measures)

I Christoffel-Minkowski problem (prescribing curvature problem)

σk(∇2h+ hI) = f.

See Guan-Ma (2003).

I Note that, the engenvalues of ∇2h+ hI are principal radii of ∂K.

I Christoffel-Minkowski problem (prescribing area measure problem)

Sk(K, ·) = µ,

where Sk(K, ·) means Aleksandrov’s k-area measures.



Aleksandrov’s variation formula (1938)

I Let K be a convex body and g ∈ C(Sn−1). Define Kt to be the Aleksandrov body
(Wulff shape) as

Kt = {x ∈ Rn : x · v ≤ hK(v) + tg(v),∀v ∈ Sn−1}, t ∈ (−δ, δ).

Then
d

dt

∣∣∣
t=0

V (Kt) =

∫
Sn−1

g(v)dS(K, v).

I One doesn’t require any regularity assumptions on K. This means that we don’t know
the exact number of hKt even if t is sufficiently small.

I The Minkowski problem is reduced to finding a critical point of the functional

Φ(K) = log

(
1

|µ|

∫
Sn−1

hKdµ

)
− 1

n
log V (K).
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Summary 1

I One can define surface area measure for each convex body. (Complex coun-
terpart? Variational proof of the Calabi conjecture, Berman-Boucksom-Gued (2013).)

I One has the variation formula of the volume with respect to perturbations
in the class of convex bodies (without regularity assumption).

I These allow one to solve the Minkowski problem in a direct way (doing
calculus...)

I What can we do along with this line?

I Not everything can be differentiated in this way.



Variation formulas for the area measures?

I One-side derivative of the ‘surface area’ gives the (n− 2)-area measure

d

dt

∣∣∣
t=0+

S(K + tL) =

∫
Sn−1

hL(v)dSn−2(K, v).

I One-side derivative of the ‘quermassintegral’ gives the k-area measure

d

dt

∣∣∣
t=0+

Wn−k−1(K + tL) =

∫
Sn−1

hL(v)dSk(K, v).

I However, it is easy to construct a convex body K and continuous function g (even if
g = 1), such that

d

dt

∣∣∣
t→0+

S(Kt) 6=
d

dt

∣∣∣
t→0−

S(Kt).



Dual Minkowski Problem

I The dual quermassintegral (Lutwak 1970s-80s).

I Variation formula (Huang-Lutwak-Yang-Zhang (2016)).

d

dt

∣∣∣
t=0

W̃n−q(Kt) = q

∫
Sn−1

g(v)dC̃q(K, v),

where C̃q(K, ·) means the dual curvature measure, and Kt is the log-Wulff shape.

I Minkowski problems for C̃q is called the dual Minkowski problem.

I C̃n(K, ·) coincides with the cone-volume measure VK , and C̃0(K∗, ·) coincides with
Aleksandrov’s integral curvature.

I This is a essentially different variation formula after Aleksandrov.



Recent development regarding the Minkowski type problems and the
variational formulas

Andrews, Bianchi, Böröczky, Brendle, Bryan, Chen, Choi, Chow, Cianchi,
Cordero-Erausquin, Colesanti, Daskalopoulos, Dou, Feng, Fimiani, Fodor,
Fragalá, Gardner, Gluck, Gong, Goodey, Grinberg, Guan, Guang, Haberl, He,
Hegedűs, Henk, Hineman, Hong, Hu, Huang, Hug, Ivaki, Jerison, Jian, Jiang,
Klain, Klartag, Kolesnikov, Kryvonos, Langharst, Leng, Lewis, Li, Lin, Linke,
Liu, Livshyts, Long, Lu, Lutwak, Ma, Marsiglietti, Milman, Miu, Ni, Nyström,
Oliker, Pollehn, Rotem, Saari, Salani,Saroglou, Scheuer, Schuster, Sheng,
Schneider, Semenov, Stancu, Sun, Trinh, Trudinger, Ulivelli, Umanskiy, Vogel,
Wang, Weil, Wu, Xia, Xie, Xing, Xiong, Xu, Xiao, Yang, Yaskin, Yaskina,Ye,
Zhang, Zhao, Zhou, Zhu, ...



A motivation of our work

I The dual curvature measures are not translation invariant in general.

I For example, an elementary sequence of the Lp dual curvature measure
(Lutwak-Yang-Zhang 2018) is defined by

C̃1,q(K,ω) =

∫
ν∗
K(ω)

|x|q−ndHn−1(x).

I One can construct a family of translation invariant geometric measures as
follows,

Fq(K,ω) =

∫
K

C̃1,q(K − z, ω)dz.

I Question: What is the ‘primitive’ of Fq(K, ·)?



Integral Geometry

I In mid-1930s, Blaschke established a school of Integral Geometry in Hamburg. See the
books of Santaló and Ren.

I Kinematic formula. For convex bodies K and L,∫
g∈G(n)

χ(K ∩ gL)dµ(g) =
1

ωn

n∑
i=0

(
n

i

)
Wi(K)Wn−i(L),

where G(n) is the group of rigid motions in Rn, and µ is the Haar measure.

I Extensions of the Kinematic formula. Chern (1942, 1952), (knwon as Chern-Yien
formula). See also the books of Blaschke, Santaló, Ren, Schneider.

I Dual Kinematic formula (of dual volumes and ‘chord integrals’). Zhang (1999).



Chord (power) integrals in Integral Geometry

I Chord integral (Blaschke, Santaló, Ren, Zhang). For a convex body K,

Iq(K) =

∫
A(n,1)

|K ∩ `|q d`, real q ≥ 0,

where |K ∩ `| denotes the length of the chord K ∩ `, and d` denotes the
normalized Haar measure on the affine Grassmannian A(n, 1).



Geometric properties of chord integrals

I Property 1.

I1(K) = V (K), I0(K) =
ωn−1
nωn

S(K).

I Property 2.∫
A(n,i)

voli(K ∩ ξi)2 dξi =
ωi
i+ 1

Ii+1(K),

∫
A(n,i)

voli(K ∩ ξi) dξi = I1(K),

where dξi denotes the normalized Haar measure on the affine Grassmannian A(n, i).

I Property 3 (Zhang (1999)).

Iq(K) =
q

ωn

∫
K

Ṽq−1(K, z) dz.

I Property 4.

Iq(K) =

∫
Sn−1

∫
u⊥
XK(z, u)qdzdu.



Analytic properties of chord integrals

I Property 5. For q > 1,

Iq(K) =

∫
Rn

∫
Rn

111K(x)111K(y)

|x− y|n+1−q dxdy;

I Property 6. For q < 1,

Iq(K) =
q(q − 1)

nωn

∫
Rn

∫
Rn

|111K(x)− 111K(y)|
|x− y|n+1−q dxdy.

Denote s = 1 − q. Ps = I1−q is the fractional perimeter. Almgren-Lieb
(1989); Bourgain-Brezis-Mironescu (2001); Ludwig (2014); Haddad-Ludwig (2023).



Summary 2

I The ‘chord integral’ Iq(·) connects the ‘volume’ V (·) and the ‘surface area’
S(·).

I Can we do calculus on the operator Iq(·)?

I Recall that S(·) is not differentiable.



Variation formula and chord measure

I Variation formula for chord integrals. (Lutwak-X.-Yang-Zhang)

Let g ∈ C(Sn−1) and Kt be the Wulff shape generated by hK + tg, that is

Kt = {x ∈ Rn : x · v ≤ hK(v) + tg(v),∀v ∈ Sn−1}.

Then, for q > 0, we have

d

dt

∣∣∣
t=0

Iq(Kt) =

∫
Sn−1

g(v) dFq(K, v).

I The chord measure (Lutwak-X.-Yang-Zhang) is defined by

Fq(K,ω) =
2q

ωn

∫
ν∗K(η)

Ṽq−1(K, z) dHn−1(z),

=

∫
K

C̃1,q(K − z, ω)dz.



Chord measure

I In the definition

Fq(K,ω) =
2q

ωn

∫
ν∗
K(η)

Ṽq−1(K, z) dHn−1(z),

for z ∈ ∂K, Ṽq−1(K, z) can be defined by

Ṽq−1(K, z) =
1

2n

∫
Sn−1

XK(z, u)
q−1du.

I When q ∈ (0, 1), Ṽq−1(K, ·) is unbounded in K, and may also be unbound-
ed on ∂K. (Singularity!)



Properties of the chord measures

I Fq is a translation invariant family of geometric measures.

Fq(K, ·) = Fq(K + x0, ·).

I The chord measure Fq(K, ·) is of centroid 0, that is∫
Sn−1

v dFq(K, v) = 0.

I F1(K, ·) = S(K, ·).



Convergence property of the chord measure

I Convergence. Suppose ∂K is C2. As q → 0, we have, up to a constant,

qṼq−1(K, z) =
q

2n

∫
Sn−1

Xu(K, z)
q−1du −→ κ1 + · · ·+ κn−1.

I As a result, in smooth case,

Fq(K, ·)→ Sn−2(K, ·) as q → 0.

This makes it reasonable to define

F0(K, ·) = Sn−2(K, ·).

I In summary, not only Iq(·)→ S(·), but also their derivatives.

(A little bit suprising because fk → f does not imply f ′k → f ′.)



The Chord Minkowski problem

I Chord Minkowski problems: Given q ≥ 0 and a Borel measure µ on the
sphere Sn−1, try to construct the convex body K such that

Fq(K, ·) = µ(·).

I We completely solved the chord Minkowski problem for all q > 0.

I Solution (Lutwat-X.-Yang-Zhang). Let q > 0. Then, both the necessary
and sufficient conditions of a measure µ to be a chord measure are:

I µ is not concentrated on a closed hemisphere of Sn−1;
I µ is of centroid 0, that is ∫

Sn−1

v dµ(v) = 0.



About the proof of the variation formula

I It is actually a problem of interchanging the limit and integral.

I Recall that

I Property 3 (Zhang (1999)).
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About the proof of the variation formula

I It is actually a problem of interchanging the limit and integral.

I The formulation (Property 3)

Iq(K) =
q
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K
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is suitable (and respectively easy to deal with) for the case q > 1.

I The difficulty lies in the case q ∈ (0, 1).

I Singularity of Ṽq−1(K, ·) on the boundary;
I We were not able to find a dominate function: By Property 4,

Iq(Kt)− Iq(K)

t
=

∫
Sn−1

∫
u⊥

XKt(z, u)q −XK(z, u)q

t
dzdu.
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Divergence type formula for chord integrals

I Calculate the derivative
d

dt

∣∣∣
t=0

Iq(K + tK).

I Since Iq is (n+ q − 1)-homogeneous, we have

d

dt

∣∣∣
t=0

Iq(K + tK) = (n+ q − 1)Iq(K).

I On the other hand, if there exists such a desired measure Fq(K, ·), we should have

(n+ q − 1)Iq(K) =
d

dt

∣∣∣
t=0

Iq(K + tK) =

∫
Sn−1

hKdFq(K, ·).

I Divergence type formula (Lutwak-X.-Yang-Zhang)

Iq(K) =
2q

ωn(n+ q − 1)

∫
∂K

Ṽq−1(K, z)(z · νK(z)) dHn−1(z).

I However, it is still not a direct computation to obtain the divergence type formula,

because of the singularity in Ṽq−1(K, ·).
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About the proof of the variation formula

I The idea is to use the divergence type formula to construct a sequence of dominated
functions φt(z, u).

I The construction guarantees

XKt
(z, u)q −XK(z, u)q

t
≤ φt(z, u),

I and the divergence type formula was used to give∫
Sn−1

∫
u⊥

lim
t→0

φt(z, u)dzdu = lim
t→0

∫
Sn−1

∫
u⊥
φt(z, u)dzdu.



Summary 3

I The differentials of chord integrals Iq(·) give the chord measures Fq(·, ·),

I and the chord measures Fq(K, ·) connects the surface area measure S(K, ·)
and the (n− 2)-area measure Sn−2(K, ·).

I We can completely solve the chord Minkowski problem of Fq(·) for arbitrary
q > 0, which can be arbitrarily close to the critical case.

I This still gives a strategy to study the Christoffel-Minkowski problem.
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A family of Monge-Ampère operators converging to σn−2

I Proposed here, for q > 0, is the following (Lutwak-X.-Yang-Zhang )

qṼq−1([h],∇h) det
(
∇2h+ hI) = f, on Sn−1.

I Here,
[h] =

{
x ∈ Rn : x · v ≤ h(v), ∀v ∈ Sn−1

}
is the convex body whose support function is h, and

∇h = ∇h(v) + h · v

is the boundary point whose outer normal is v. For the convex body [h] and z =

∇h(v) ∈ ∂[h], the integral operator Ṽq−1([h],∇h) is defined as before.

I If h is C2 and det
(
∇2h+ hI) > 0, then, up to a constant

qṼq−1([h],∇h) det
(
∇2h+ hI) −→ σn−2(∇2h+ hI)



I We are able to find both the necessary and sufficient conditions of the
existence of its weak solution.

I Question 1: Fix q > 0. Under what condition of f , the solution h belongs
to C2,α?

I Question 2: Under what condition of f , the solution hq has a uniform C2,α

estimate independent of q?

I If Question 2 is answered, then by the compactness, we may derive

f = qjṼqj−1(h,∇hqj) det
(
∇2hqj + hqjI)→ σn−2((∇2h0 + h0I),

I a solution to the (n− 2)-Christoffel-Minkowski problem.
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General operators converging to σm

I The section-power integral Wm,q(K) of convex body K is defined by

Wm,q(K) :=

∫
A(n,m)

volm(K ∩ ξ)qdξ,

where dξ denotes the Haar measure on affine Grassmann space A(n,m). By Cauthy-
Kubota formula, Wm,q(K)→Wm(K) as q → 0+.

I Define the section-power measure by

Fm,q(K, η) := q

∫
ν−1
K (η)

∫
G(n,m)

volm(Kz ∩ E)q−1dEdHn−1(z), Borel η ⊂ Sn−1.

I If ∂K is C2 and has positive curvatures, then, up to a constant,

Fm,q(K, ·) −→ Sn−1−m(K, ·)

weakly as q → 0+. (Note that fk → f does not imply f ′k → f). In fact,

q

∫
G(n,m)

volm(Kz ∩ E)q−1dE −→ Cm(z).



The case m = 2 (scalar curvature case)

I Take m = 2 for example. We can compute that

q

∫
G(n,m)

volm(Kz ∩ E)q−1dE → π

4(n− 1)
C2(z).

I Denote en to be the normal of ∂K at z. Using a integral geometry formula

q

∫
G(n,2)

vol2(Kz ∩ E)q−1dE

=
q(n− 2)

2|Sn−2||Sn−3|

∫
e⊥n∩Sn−1

∫
v⊥1 ∩Sn−1

vol2(Kz ∩ E)q−1|w · en|dwdv1.

By an estimate of vol2(Kz ∩ E) and the other integral geometry formula,

q

∫
G(n,2)

vol2(Kz ∩ E)q−1dE →
∫
G(e⊥n ,2)

C(E2)dE2,

where C(E2) denote the sectional curvature and E2 is a 2-dim subspace of e⊥n .



Thank you!


