
HOW COXETER AND ESCHER 
MEET POISSON

CHRISTOPH THÄLE



THE POISSON PROCESS
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THE POISSON PROCESS
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THE POISSON PROCESS

‣  

‣  disjoint   independent

η(B) ∼ Poisson(μ(B))

B1, …, Bn ⟹ η(B1), …, η(Bn)

Key properties of a Poisson process  
with intensity measure :
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THE POISSON HYPERPLANE PROCESS

‣  space of affine hyperplanes in  

‣ parametrization:  

‣ invariant measure , that is 

 

                       

‣ Poisson hyperplane process   

               = Poisson process on  with intensity measure  

‣ Classical model in stochastic geometry 

‣ Many contributions by Calka, Hug, Kabluchko, Mecke, Miles, 

Reitzner, Santaló, Schneider …

& ℝd

H(u, s) := {z ∈ ℝd : ⟨z, u⟩ = s}

dΛ = dsdu

∫&
f(H) Λ(dH) = ∫ℝ ∫,d−1

f(H(u, s)) dsdu

η

& Λ

s

u

H(u, s)



FLUCTUATIONS OF THE SURFACE FUNCTIONAL

‣ invariant measure  

‣ Poisson hyperplane process   

‣ Surface functional  

‣ Question: distributional behavior as ? 

‣ Answer:  and   as   

‣ Paroux 1998 for                               Last, Penrose, Schulte, T. 2014 

Heinrich, Schmidt, Schmidt 2006          Eichelsbacher, Thäle 2014  

Heinrich 2009                                            Schulte 2016 

Reitzner, Schulte 2013                             + many others

dΛ = dsdu

η

SR := ℋd−1( ⋃
H∈η

H ∩ BR)

R → ∞

1SR, Var SR
SR − 1SR

Var SR

D⟶ 3(0,1) R → ∞

d = 2



HYPERBOLIC SPACE

‣  = -dimensional standard space of constant curvature  

‣ Conformal ball model:   

with Riemannian metric  

‣ Geodesics = Euclidean lines through the centre 

or circular arcs that intersect the boundary of  orthogonally  

‣ Volume and surface growth:  

                     

                    

ℍd d −1

Bd = {z ∈ ℝd : ∥z∥ < 1}

gℍd = 4
(1 − ∥z∥2)2 gℝd

Bd

ℋd(Bd
R) = ωd ∫

R

0
sinhd−1 s ds = Θ(e(d−1)R)

ℋd(,d−1
R ) = ωd sinhd−1 R = Θ(e(d−1)R)

Euclidean case

ℋd(Bd
R) = ωd ∫

R

0
sd−1 ds = Θ(Rd)

ℋd(,d−1
R ) = ωdRd−1 = Θ(Rd−1)
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POISSON GEODESIC HYPERPLANES

‣ Geodesic hyperplane in  = totally geodesic hypersurface  

‣ In the conformal ball model: Euclidean hyperplanes through the centre or 

spheres orthogonal to the boundary 

‣  = space of geodesic hyperplanes in  

‣ parametrization:  

‣ invariant measure (Santaló):  

‣  = Poisson process on  with intensity measure  

ℍd

&0 ℍd

H = H(u, s)

dΛ0 = coshd−1 s dsdu

η0 &0 Λ0



POISSON GEODESIC HYPERPLANES

Theorem (Herold, Hug, T. 2019 PTRF)

SR − 1SR

Var SR

D⟶ 3(0,1) if and only if d ≤ 3

‣  = space of geodesic hyperplanes in  

‣ invariant measure (Santaló):  

‣  = Poisson process on  with intensity measure  

‣ Surface functional  

‣ Question: distributional behavior as ?

&0 ℍd

dΛ0 = coshd−1 s dsdu

η0 &0 Λ0

SR := ℋd−1( ⋃
H∈η0

H ∩ BR)
R → ∞



POISSON GEODESIC HYPERPLANES

Theorem (Herold, Hug, T. 2019 PTRF)

SR − 1SR

Var SR

D⟶ 3(0,1) if and only if d ≤ 3

Some words about the proof: 

‣ Basic technique: Malliavin-Stein method 

‣ : easy 

‣ : not easy, depends on a full classification of a set of partitions with 

prescribed properties (  1 weekend on the RUB HPC cluster) 

‣ : show that the 4th cumulants are uniformly bounded from below

d = 2

d = 3
≈

d ≥ 4



POISSON GEODESIC HYPERPLANES

Theorem (Herold, Hug, T. 2019 PTRF)

SR − 1SR

Var SR

D⟶ 3(0,1) if and only if d ≤ 3

Natural follow-up questions: 

‣ What are hyperplanes in hyperbolic space? 

‣ What happens for ?d ≥ 4



TOTALLY UMBILIC HYPERSURFACES

ℝd ℍdEuclidean space Hyperbolic space

λ = 0 hyperplanes

λ > 0 spheres

λ = 0 genuine geodesic hyperplanes

λ > 1 hyperbolic spheres

λ ∈ (0,1) equidistants from genuine geodesic hyperplanes

sphere intersecting the boundary  
at an angle , where θ cos θ = λ

‣ Let  be a hypersurface 

‣ The second fundamental form at  

                   

‣  is totally umbilic if at each point ,  

If  has constant curvature,  is constant on  

‣ In particular, a totally umbilic hypersurface with  is totally geodesic

Σ ⊂ (M, g)

x ∈ Σ
B : TxΣ × TxΣ → ℝ, B(v, v) = κγv

(x)

Σ x ∈ Σ B = λg

M λ Σ

λ = 0



TOTALLY UMBILIC HYPERSURFACES

ℍdHyperbolic space

λ = 0 genuine geodesic hyperplanes

λ > 1 hyperbolic spheres

λ ∈ (0,1) equidistants from genuine geodesic hyperplanes
λ = 1 horospheres

Definition (Solanes)

A -geodesic hyperplane is a totally umbilic 
hypersurface with .

λ
λ ∈ [0,1]

sphere intersecting the boundary  
at a single point

sphere intersecting the boundary  
at an angle , where θ cos θ = λ

‣ Let  be a hypersurface 

‣ The second fundamental form at  

                   

‣  is totally umbilic if at each point ,  

If  has constant curvature,  is constant on  

‣ In particular, a totally umbilic hypersurface with  is totally geodesic

Σ ⊂ (M, g)

x ∈ Σ
B : TxΣ × TxΣ → ℝ, B(v, v) = κγv

(x)

Σ x ∈ Σ B = λg

M λ Σ

λ = 0



INTERLUDE: COXETER AND ESCHER

‣ M.C. Escher’s Circle Limit III depicts a tessellation 

of the hyperbolic plane 

‣ Escher: the fish „… shoot up perpendicularly from the boundary …“ 

‣ B. Ernst (The Magic Mirror of Escher): some arcs are not 

„… placed at right angles to the circumference (as they ought to be)“ 

‣ Coxeter (in a publication in Leonardo): „the arcs along with Esher’s fishes swim 

are equidistants.“ He computed  and deduced λ = 21/4 − 2−1/4

2 θ ≈ 80∘
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POISSON -GEODESIC HYPERPLANESλ

‣ : space of -geodesic hyperplanes 

‣ invariant measure (Santaló, Gallego, Naveira, Solanes): 

 

‣ : Poisson process on the space  with intensity measure  

‣ Surface functional  

‣ Question: distributional behavior as ?

&λ λ

dΛλ = (cosh s − λ sinh s)d−1 dsdu

ηλ &λ dΛλ

SR,λ := ℋd−1( ⋃
H∈ηλ

H ∩ BR)
R → ∞

λ = 0

λ = 1



‣ Surface functional SR,λ := ℋd−1( ⋃
H∈ηλ

H ∩ BR)

λ = 0

λ = 1

Lemma: 

= ℋd(BR)

Mecke equation

Crofton formula for -geodesic hyperplanesλ

POISSON -GEODESIC HYPERPLANESλ

1SR,λ = ℋd(BR)

= ∫&λ

ℋd−1(H ∩ BR) Λλ(dH)

1SR,λ = 1 ∑
H∈ηλ

ℋd−1(H ∩ BR)



‣ Surface functional SR,λ := ℋd−1( ⋃
H∈ηλ

H ∩ BR)

λ = 0

λ = 1

Lemma: 

∫&λ

ℋd−1(H ∩ BR) Λλ(dH)

Expectation

∫&λ

ℋd−1(H ∩ BR)2 Λλ(dH)

Variance

POISSON -GEODESIC HYPERPLANESλ

Var SR,λ ≍

eR : λ < 1 and d = 2
Re2R : λ < 1 and d = 3
e2(d−1)R : λ < 1 and d ≥ 4
Re(d−1)R : λ = 1 and d ≥ 2

Lemma: 1SR,λ = ℋd(BR)



‣ Surface functional SR,λ := ℋd−1( ⋃
H∈ηλ

H ∩ BR)

λ = 0

λ = 1

Lemma: 

Var SR,λ ≍

eR : λ < 1 and d = 2
Re2R : λ < 1 and d = 3
e2(d−1)R : λ < 1 and d ≥ 4
Re(d−1)R : λ = 1 and d ≥ 2

Lemma: 1SR,λ = ℋd(BR)

Theorem (Kabluchko, Rosen, T. 2023 IJM): 

SR − 1SR

Var SR

D⟶ 3(0,1) .Suppose that  and . Then0 ≤ λ < 1 d ≤ 3

POISSON -GEODESIC HYPERPLANESλ



λ = 0

λ = 1

Theorem (Kabluchko, Rosen, T. 2023 IJM): 

SR − 1SR

e(d−2)R
D⟶ ZSuppose that  and . Then0 ≤ λ < 1 d ≥ 4

‣ Z infinitely divisible 

‣ non-Gaussian
‣ κm(Z) = π(1 − λ2)d − 1

2

Γ( (d − 2)ℓ − (d − 1)
2 )

Γ( (d − 2)(ℓ − 1)
2 )

.

Theorem (Kabluchko, Rosen, T. 2023 IJM): 

SR − 1SR

Var SR

D⟶ 3(0,1) .Suppose that  and . Then0 ≤ λ < 1 d ≤ 3

POISSON -GEODESIC HYPERPLANESλ



Theorem (Kabluchko, Rosen, T. 2023 IJM): 

SR − 1SR

Var SR

D⟶ 3(0, 1
2 ) .Suppose that  and . Thenλ = 1 d ≥ 2

Theorem (Kabluchko, Rosen, T. 2023 IJM): 

Suppose that  and . Then0 ≤ λ < 1 d ≥ 4

‣ Z infinitely divisible ‣ non-Gaussian

POISSON -GEODESIC HYPERPLANESλ
Theorem (Kabluchko, Rosen, T. 2023 IJM): 

SR − 1SR

Var SR

D⟶ 3(0,1) .Suppose that  and . Then0 ≤ λ < 1 d ≤ 3

λ = 0

λ = 1

SR − 1SR

e(d−2)R
D⟶ Z



ΨR(t) := 1eitFR = exp(∫
R

−R
[eitgR(s) − 1 − itgR(s)]pλ(s) ds)

gR(s) = e−(d−2)Rℋd−1(H(s) ∩ BR)
pλ(s) = (cosh s − λ sinh s)d−1

gR(s) ⟶ Cd,λ cosh−(d−2)(s − Δ)
Δ = artanh(λ)

Key geometric lemma

1. Consider the characteristic function of :FR 2. Try to interchange limit and integral

3. Justify step 2 by dominated convergence 

This is possible exactly if d ≥ 4
4. Observe that by the Lévy-Khintchin formula 
     the random variable  is infinitely divisible 
     without Gaussian component

Z

SOME IDEAS ABOUT THE PROOF ( )0 ≤ λ < 1

Theorem (Kabluchko, Rosen, T. 2023 IJM): 

Suppose that  and . Then0 ≤ λ < 1 d ≥ 4

‣ Z infinitely divisible ‣ non-Gaussian

Define
SR − 1SR

e(d−2)R
D⟶ Z FR := SR − 1SR

e(d−2)R



OUTLOOK

What is special about ,  and ?d = 2 d = 3 d ≥ 4

Consider -dimensional totally geodesic subspaces.  
Intersect  of them  intersection process of oder . 
Look at the sum of the -volumes.

k
m ⟶ m

[d − m(d − k)]

2k < d :
2k = d :
2k = d + 1 :
2k > d + 1 :

Then  and CLT holds with usual ratem = 1
Then  and CLT holds with usual ratem ∈ {1,2}
Then  and CLT holds with slower ratem ∈ {1,2,3}
CLT breaks down

Theorem (Betken, Hug, T. 2023 SPA): 

Open problem: Characterize the limit 
                              distribution for intersection processes.

The bigger picture: Stochastic geometry in non-Euclidean geometries 

- Random polytopes 

- Random tessellations 

- Random graphs
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