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Volume product

▶ Let K ⊂ Rn be a convex body (i.e., compact and convex set with
intK ̸= ∅) with 0 ∈ intK.

▶ Polar body of K:

K◦ := {x ∈ Rn | ⟨x, y⟩ ≤ 1,∀y ∈ K}.

c.f. (Bn
p )

◦ = Bn
p′ with p−1 + (p′)−1 = 1 where

Bn
p := {x = (x1, . . . , xn) ∈ Rn | (

n∑
i=1

|xi|p)
1
p ≤ 1}, 1 ≤ p ≤ ∞.

▶ Volume product of K:
v(K) := |K||K◦|.

v is linear invariant, i.e., v(TK) = v(K) for any linear isomorphism T on
Rn.
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Blaschke–Santaló inequality and Mahler conjecture

Theorem 1 (Blaschke 1917, Santaló 1949, Petty 1985)

For any convex body K ⊂ Rn with bK := 1
|K|

∫
K
x dx = 0, it holds that

v(K) ≤ v(Bn
2 ).

Equality holds iff K is a symmetric ellipsoid.

Mahler conjecture

▶ Non-symmetric case : For any convex body K ⊂ Rn with bK = 0,

v(K) ≥ v(∆n
0 ),

where ∆n
0 is an n-dimensional simplex with b∆n

0
= 0.

▶ Symmetric case : For any symmetric convex body K ⊂ Rn (i.e.,
K = −K),

v(K) ≥ v(Bn
∞) = v(Bn

1 ).
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Known results

▶ Mahler (1938): symmetric and non-symmetric cases for n = 2.

▶ Iriyeh–Shibata (2020): symmetric case for n = 3. A short proof by
Fradelizi–Hubard–Meyer–Roldán-Pensado–Zvavitch (2022).

Partial answers.

▶ unconditional convex bodies: Saint-Raymond (1980), Meyer (1986).

▶ zonoid: Reisner (1986), Gordon–Meyer–Reisner (1988).

▶ symmetric polytopes in Rn with 2n+ 2 vertices: Lopez and Reisner
(1998), Karasev (2021).

▶ polytopes with not more than n+ 3 vertices in Rn: Meyer–Reisner (2006).

▶ some bodies with many symmetries: Barthe–Fradelizi (2013),
Iriyeh–Shibata (2022).

▶ Asymptotic estimate: Bourgain–Milman (1986), Kuperberg (2008).
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New lower bound for specific volume products

Corollary 1 (Nakamura–T.)

Let n ≥ 2, κ ∈ (0, 1] and K ⊂ Rn be a convex body with 0 ∈ intK. Suppose
that ∥ · ∥2K is C2 on Rn \ {0} and satisfies

∇2(
1

2
∥ · ∥2K) ≥ κΛ−1, ∇2(

1

2
∥ · ∥2K◦) ≥ κΛ

for some positive definite symmetric matrix Λ ∈ Rn×n. Then it holds that

v(K) ≥ (κ2e1−κ2

)
n
2 v(Bn

2 ).

▶ Our assumptions imply that the principle curvatures on ∂(Λ− 1
2K) and

∂(Λ− 1
2K)◦ are uniformly bounded from below by κ.

▶ Stancu (2009) and Reisner–Schütt–Werner (2012): The boundary of the
local minimizer must be flat, i.e., if there exists a point in either ∂K or
∂K◦ at which the (generalized) Gauss curvature exists and is not 0 then
v(K) is not a local minimum.

▶ Trivial lower bound:
v(K) ≥ (κ2)

n
2 v(Bn

2 ).

▶ Mahler’s conjecture is true for K satisfying our assumptions with κ close
to 1, i.e.,

(κ2e1−κ2

)
n
2 v(Bn

2 ) ≥ v(∆n
0 ) in non-symmetric case,

(κ2e1−κ2

)
n
2 v(Bn

2 ) ≥ v(Bn
∞) in symmetric case. 5 / 14



How to show Corollary 1?

⇝ Let us enter the world of heat flow!
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Hypercontractivity

▶ For s > 0 (time) and f : Rn → [0,∞) (initial data), the
Ornstein–Uhlenbeck semigroup is given by

Psf(x) :=

∫
Rn

f(e−sx+
√

1− e−2sy) dγ(y),

which is a solution of ∂su = ∆u− ⟨x,∇u⟩ with u(s, x) = Psf(x).

▶ Mass-preservation: ∥Psf∥L1(γ) = ∥f∥L1(γ) and lims→∞ Psf ≡ const.

▶ Contraction: ∥Psf∥Lp(γ) ≤ ∥f∥Lp(γ) for p ≥ 1. In particular,

1 ≤ q ≤ p ⇒ ∥Psf∥Lq(γ) ≤ ∥Psf∥Lp(γ) ≤ ∥f∥Lp(γ).

Question 1. Can we exceed 1 ≤ q ≤ p?

1 ≤ p ≤ q ⇒ ∥Psf∥Lq(γ) ≤ ∥f∥Lp(γ).

⇝ Yes! This is Hypercontractiviy.
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Hypercontractivity

Theorem 2 (Nelson’s forward HC, 1973)

Suppose s > 0 and p, q ∈ R \ {0}. Then

1 < p, q with
q − 1

p− 1
≤ e2s ⇒ ∥Psf∥Lq(γ) ≤ ∥f∥Lp(γ).

Moreover

1 < p, q with
q − 1

p− 1
> e2s ⇒ sup

0≤f∈Lp(γ)

∥Psf∥Lq(γ)

∥f∥Lp(γ)

= +∞.

▶ In below, we reformulate forward HC as ∥Ps[f
1
p ]∥Lq(γ) ≤ (

∫
Rn f dγ)

1
p .
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Forward hypercontractivity ⇒ inverse Santaló inequality

Proposition 1 (Nakamura–T.)

Suppose that for small s > 0, there exists some qs = −2s+ o(s) < 0,
ps = 2s+ o(s) > 0 and CIS(s) > 0 such that

∥Ps[f
1
ps ]∥Lqs (γ) ≤ CIS(s)

1
ps (

∫
Rn

f dγ)
1
ps

for all nonnegative log-concave function f . Then

v(K) ≥ v(Bn
2 ) lim sup

s↓0
(CIS(s)

−1)

for all convex body K ⊂ Rn.

Sketch of proof. Taking the power of ps,

∥Ps[f
1
ps ]∥psLqs (γ) ≤ CIS(s)(

∫
Rn

f dγ).

Insert f(x) = e−
1
2
∥x∥2K and let s ↓ 0.
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▶ In our settings, −∞ < qs < 0 < ps < 1. ⇝ Nobody knows forward HC...

Question 2. Does forward HC hold for −∞ < q < p < 1?.

−∞ < q < p < 1 ⇒ ∥Ps[f
1
p ]∥Lq(γ) ≤ (

∫
Rn

f dγ)
1
p .

⇝ Yes! if f has certain strong log-concavity and convexity.
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Answer to Question 2: Forward HC for p, q < 1

Theorem 3 (Nakamura–T.)

Let s > 0, 0 < p < 1, q ∈ (−∞, 1) \ {0} satisfy q−1
p−1

= e2s, and β ≥ 1. Then

for any f : Rn → (0,∞) satisfying

0 ≤ ∇2 log f ≤ (1− 1

β
)idRn ,

it holds that

∥Pt[f
1
p ]∥Lq(γ)≤∥Pt[(

γβ
γ
)
1
p ]∥Lq(γ)(

∫
Rn

f dγ)
1
p .

Here

γβ(x) :=
1

(2πβ)
n
2
e
− 1

2β
|x|2

.

▶ The proof is accomplished by the flow monotonicity of the Fokker–Planck
flow combined with the Poincaré inequality.
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New lower bound for specific volume products again

Corollary 1 (Nakamura–T.)

Let n ≥ 2, κ ∈ (0, 1] and K ⊂ Rn be a convex body with 0 ∈ intK. Suppose
that ∥ · ∥2K is C2 on Rn \ {0} and satisfies

∇2(
1

2
∥ · ∥2K) ≥ κΛ−1, ∇2(

1

2
∥ · ∥2K◦) ≥ κΛ

for some positive definite symmetric matrix Λ ∈ Rn×n. Then it holds that

v(K) ≥ (κ2e1−κ2

)
n
2 v(Bn

2 ).

▶ To obtain this corollary, we apply the same argument in Proposition 1 to
Theorem 3.
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Open question toward Mahler conjecture

Conjecture

Let s > 0, ps = 1− e−2s and qs = 1− e2s.
Non-symmetric case:

sup
0≤f∈L1(γ)
log-concave

∥Ps[f
1
ps ]∥Lqs (γ)

(
∫
Rn f dγ)

1
ps

=
∥Ps[f

1
ps
∗ ]∥Lqs (γ)

(
∫
Rn f∗ dγ)

1
ps

where f∗(x) := 1[−1,∞)ne
−(x1+···+xn)/γ(x).

Symmetric case:

sup
0≤f∈L1(γ)

sym. log-concave

∥Ps[f
1
ps ]∥Lqs (γ)

(
∫
Rn f dγ)

1
ps

=
∥Ps[f

1
ps
∗∗ ]∥Lqs (γ)

(
∫
Rn f∗∗ dγ)

1
ps

where f∗∗(x) := e−(|x1|+···+|xn|)/γ(x).

▶ f∗γ, f∗∗γ are conjectured as minimizers of functional version of Mahler
conjecture formulated by Fradelizi–Meyer (2008).
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Thank you for your attention!

14 / 14


