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Volume product

> Let K C R™ be a convex body (i.e., compact and convex set with
intK # 0) with 0 € intK.

» Polar body of K:
K°={zeR"|(z,y) <1,Vye K}.
cf. (Bp)° =Bl withp~' + (p) ! =1 where
By = {z = (z1,....2) R | (M |wsl")? <1}, 1<p<oc.
i1

» Volume product of K:
v(K) = |K||K°|.

v is linear invariant, i.e., v(TK) = v(K) for any linear isomorphism 7" on
R"™.

2/14



Blaschke—Santalé inequality and Mahler conjecture

Theorem 1 (Blaschke 1917, Santalé 1949, Petty 1985)
For any convex body K C R™ with bx = ﬁ fK xdx = 0, it holds that

v(K) < v(BE).

Equality holds iff K is a symmetric ellipsoid.

Mabhler conjecture
» Non-symmetric case : For any convex body K C R™ with bx =0,
v(K) > v(Ag),

where Ay is an n-dimensional simplex with bap = 0.

» Symmetric case : For any symmetric convex body K C R" (i.e.,
K=-K),
v(K) > v(B%) = v(BT).
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Known results

v

Mahler (1938): symmetric and non-symmetric cases for n = 2.

Iriyeh—Shibata (2020): symmetric case for n = 3. A short proof by
Fradelizi-Hubard—Meyer—Roldan-Pensado—Zvavitch (2022).

Partial answers.

unconditional convex bodies: Saint-Raymond (1980), Meyer (1986).
zonoid: Reisner (1986), Gordon—Meyer—Reisner (1988).

symmetric polytopes in R™ with 2n + 2 vertices: Lopez and Reisner
(1998), Karasev (2021).

polytopes with not more than n + 3 vertices in R™: Meyer—Reisner (2006).

some bodies with many symmetries: Barthe—Fradelizi (2013),
Iriyeh—Shibata (2022).
Asymptotic estimate: Bourgain—-Milman (1986), Kuperberg (2008).
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New lower bound for specific volume products
Corollary 1 (Nakamura-T.)

Letn > 2, k € (0,1] and K C R™ be a convex body with 0 € intK. Suppose
that || - ||% is C*® on R™\ {0} and satisfies

1 _ 1
VGl R 2 A VR  Ie) 2 mA
for some positive definite symmetric matrix A € R™*™. Then it holds that

o(K) > (k2% )5 u(BD).

» Our assumptions imply that the principle curvatures on f)(A*%K) and

O(A’%K)O are uniformly bounded from below by «.

» Stancu (2009) and Reisner=Schiitt—Werner (2012): The boundary of the
local minimizer must be flat, i.e., if there exists a point in either 0K or
OK?° at which the (generalized) Gauss curvature exists and is not 0 then
v(K) is not a local minimum.

» Trivial lower bound: S

v(K) > (k)2 v(BY).

» Mahler's conjecture is true for K satisfying our assumptions with x close

to 1, i.e.,

2
(k%' ™" )2 u(BY) > v(A§) in non-symmetric case,

2. n
(k%' 7" )2 u(BY) > v(B%) in symmetric case. 5/14



How to show Corollary 17
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How to show Corollary 17
~ Let us enter the world of heat flow!
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Hypercontractivity

» For s > 0 (time) and f: R™ — [0, c0) (initial data), the
Ornstein—Uhlenbeck semigroup is given by

Psf(z) = . fle™x + /1 — e 25y)dy(y),

which is a solution of d;u = Au — (z, Vu) with u(s,z) = Ps f(z).

> Mass-preservation: ||Psf[|z1¢y) = || fllL1(y) and lims—oo Psf = const.

» Contraction: ||Psf|zr(y) < ||fllLe¢y) for p > 1. In particular,

1<qg<p = |Pfllraty) SWNPsflley < N fllze-
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Hypercontractivity
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1<qg<p = |Pfllraty) SWNPsflley < N fllze-

Question 1. Can we exceed 1 < ¢ < p?

1<p<q = |Psfllzacy) < Iflleecy)-

~ Yes! This is Hypercontractiviy.
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Hypercontractivity

Theorem 2 (Nelson's forward HC, 1973)
Suppose s > 0 and p,q € R\ {0}. Then

L oq—1 s
1< p,q with qul <e*® = ||Pfllracn < I1flLo-
Moreover

. -1 - P,
1 < p,q with qil > e = sup m —
p—

0<feLP(y) ||f||LP(w)

» In below, we reformulate forward HC as HPS[f%]HLq(W) < (Jan fdfy)%.
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Forward hypercontractivity = inverse Santalé inequality

Proposition 1 (Nakamura—T.)

Suppose that for small s > 0, there exists some qs = —2s + o(s) < 0,
ps = 25+ o(s) > 0 and Cis(s) > 0 such that

I1P,[f 7]

1 1
|pas(my < Cis(s)Pe ([ fdy)?s
Rn

for all nonnegative log-concave function f. Then

v(K) > v(B%) limsup(Cis(s) ")
sl0

for all convex body K C R".

Sketch of proof. Taking the power of ps,

1P L7 B 0y < Crs(s)( | f ).

R™

Insert f(z) = e~ 21ol% and let s 4 0.

9/14



Forward hypercontractivity = inverse Santalé inequality

Proposition 1 (Nakamura—T.)

Suppose that for small s > 0, there exists some qs = —2s + o(s) < 0,
ps = 2s + o(s) > 0 and Cis(s) > 0 such that

1P ]l as ) < Cis(s) 7 ( / fdn)®

for all nonnegative log-concave function f. Then
v(K) > v(BY) limsup(Cis(s) ")
sl0
for all convex body K C R".

» In our settings, —00 < ¢s < 0 < ps < 1. ~> Nobody knows forward HC...

10/14



Forward hypercontractivity = inverse Santalé inequality

Proposition 1 (Nakamura—T.)

Suppose that for small s > 0, there exists some qs = —2s + o(s) < 0,
ps = 2s + o(s) > 0 and Cis(s) > 0 such that

1P ]l as ) < Cis(s) 7 ( / fdn)®

for all nonnegative log-concave function f. Then
v(K) > v(BY) limsup(Cis(s) ")
sl0
for all convex body K C R".
» In our settings, —00 < ¢s < 0 < ps < 1. ~> Nobody knows forward HC...

Question 2. Does forward HC hold for —co < ¢ < p < 17.

=

1
—co<g<p<l = HPs[fPHImwS(/ fdy)r.
R‘VL

10/14
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sl0
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» In our settings, —00 < ¢s < 0 < ps < 1. ~> Nobody knows forward HC...

Question 2. Does forward HC hold for —co < ¢ < p < 17.

=

1
—co<g<p<l = HPs[fPHImwS(/ fdy)r.
R‘VL

~+ Yes! if f has certain strong log-concavity and convexity.
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Answer to Question 2: Forward HC for p,q < 1

Theorem 3 (Nakamura—T.)

Lets>0,0<p<1,q€ (—o0,1)\{0} satisfy =3 =€, and 3 > 1. Then
for any f: R™ — (0, 00) satisfying

0< Vlogs < (1 - )ider,
it holds that
1 1 1
||Pt[fp]||Lq(y)Sth[(%)"]lqu(w)(/R fdy)e.

Here

1 — [
Yo (x) = 21",

(2mB)

3

» The proof is accomplished by the flow monotonicity of the Fokker—Planck
flow combined with the Poincaré inequality.
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New lower bound for specific volume products again

Corollary 1 (Nakamura-T.)

Letn > 2, k € (0,1] and K C R™ be a convex body with 0 € intK. Suppose
that || - ||% is C* on R™\ {0} and satisfies

E
2

for some positive definite symmetric matrix A € R"*™. Then it holds that

_ 1
VGH- ) 2 kA7 VG- Ilke) 2 mA

n

o(K) > (k2% )2 0u(BD).

» To obtain this corollary, we apply the same argument in Proposition 1 to
Theorem 3.
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Open question toward Mahler conjecture

Let s > 0, ps =1—¢2% and qs =1-—¢e*.
Non-symmetric case:

1 1
sup N Ps[fPs llLas vy I Ps[£° Ml Las (1)
1 - 1
osseL’ () (Jgn fdv)Ps (Jgn fxdy)?s

log-concave

where f.(z) = 1[71,oo)n6_(11+A“+z")/7(x)-
Symmetric case:

e N

I1Ps[f 7= Mllzas vy _ 1P [F45 Nl Las ()

T = T

o<feLl(m)  (fgn fdy)Ps (Jgn Jox dry) s

sym. log-concave

where fu.(x) = e_(m““""““‘"')/fy(x).

» f., f«x7y are conjectured as minimizers of functional version of Mahler
conjecture formulated by Fradelizi-Meyer (2008).
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Thank you for your attention!
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