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HOW COXETER AND ESCHER
MEET POISSON




THE POISSON PROCESS

> (X, X) measurable space * Random sample of n

S EE—— independent random

points with distribution u

v

u probability/finite measure

> (X, X) measurable space , )
> Poisson process with

ﬁ

» u o-finite measure Intensity measure u
Within each B; :

ﬁ > |, is afinite measure
B)"
ﬂ » N; ~ Poisson(u(B;)), that is, P[V; = k] = 'M(k 'l) e H(B)

> random sample of N, points with distribution
H |BZ/M(B1)




THE POISSON PROCESS

> (X, X) measurable space * Random sample of n

S EE—— independent random

points with distribution u
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> (X, X) measurable space , )
> Poisson process with
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» 1 o-finite measure intensity measure u

Now forget about the sets B,

and the numbers NV,

* Poisson process 7 with

Intensity measure



THE POISSON PROCESS

> (X, X) measurable space * Random sample of n

S EE—— independent random

points with distribution u

v

u probability/finite measure

> (X, X) measurable space , )
> Poisson process with

ﬁ

» 1 o-finite measure intensity measure u

Key properties of a Poisson process

with intensity measure u:

* n(B) ~ Poisson(u(B))

> By, ...,B, disjoint= n(B,), ..., n(B,) independent



THE POISSON HYPERPLANE PROCESS

- A space of affine hyperplanes in R?

- parametrization: H(u,s) := {z € RY: (z,u) = s)

» invariant measure dA = dsdu, that is

JUH) A(dH) =

JA

» Poisson hyperplane process 7

Sd-1

f(H(u,s)) dsdu

= Poisson process on A with intensity measure A

» Classical model in stochastic geometry

» Many contributions by Calka, Hug, Kabluchko, Mecke, Miles,

Reitzner, Santald, Schneider ...
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FLUCTUATIONS OF THE SURFACE FUNCTIONAL

» invariant measure dA = dsdu

» Poisson hyperplane process 7 _

. Surface functional Sy := ?/d_1< U HnN BR>

» Question: distributional behavior as R — o0? ‘-, / :
S R — [ES R D “\ ',"'

. Answer: ESp, Var §; and > A(0,1) as R = o !
y/ Var Sp 4

~~
~
S a
-

-
-
--------

» Paroux 1998 ford =2 Last, Penrose, Schulte, T. 2014
Heinrich, Schmidt, Schmidt 2006 Eichelsbacher, Thale 2014
Heinrich 2009 Schulte 2016

Reitzner, Schulte 2013 + many others



= d-dimensional standard space of constant curvature — 1

Bi={zeR?:|z|| < 1}
4
nd
(1= 1z12)2 7%

with Riemannian metric gy, =

= Euclidean lines through the centre

or circular arcs that intersect the boundary of B¢ orthogonally
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in H’ = totally geodesic hypersurface

In the : Euclidean hyperplanes through the centre or

spheres orthogonal to the boundary

A, = space of geodesic hyperplanes in H”
parametrization: H = H(u, s)

(Santald): dA, = cosh?™! s dsdu
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1o = Poisson process on A with intensity measure A S S SR s
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POISSON GEODESIC HYPERPLANES

- A, = space of geodesic hyperplanes in H?

> invariant measure (Santald): dA, = cosh? ™1 s dsdu

> 119 = Poisson process on A with intensity measure A,

Surface functional S := #%! U H N By
Hen,

» Question: distributional behavior as R — c0?

Theorem (Herold, Hug, T. 2019 PTRF)
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K LN A(0,1) if and only if
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POISSON GEODESIC HYPERPLANES

Theorem (Herold, Hug, T. 2019 PTRF)

Sp—ES
i R 2, ¥#0,1) ifand onlyif d<3
\/VﬂfSR

Some words about the proof:

» Basic technique: Malliavin-Stein method
» d = 2: easy

» d = 3: not easy, depends on a full classification of a set of partitions with

prescribed properties ( % 1 weekend on the RUB HPC cluster)

» d > 4: show that the 4th cumulants are uniformly bounded from below




POISSON GEODESIC HYPERPLANES

Theorem (Herold, Hug, T. 2019 PTRF)

\) \)
K LN A(0,1) ifandonlyif d<3
\/VﬂfSR

Natural follow-up questions:

» What are hyperplanes in hyperbolic space?

» What happens ford > 47




TOTALLY UMBILIC HYPERSURFACES

A\

Let > C (M, g) be a hypersurface

The second fundamental form atx € X

B:T2XT~2— R, B(v,v) =k, (x)

A\

v

Y is totally umbilic if at each pointx € X, B = Ag

If M has constant curvature, 1 is constant on 2 , ,
sphere intersecting the boundary

T le 6 wh =41
> In particular, a totally umbilic hypersurface with 4 = 0 is totally geodesic atan angie v, where tOS

Euclidean space R? Hyperbolic space H¢
A=0 hyperplanes 1 =0 genuine geodesic hyperplanes
A>0 spheres A€ (0,1) equidistants from genuine geodesic hyperplanes

1>1 hyperbolic spheres




TOTALLY UMBILIC HYPERSURFACES

A\

Let > C (M, g) be a hypersurface

The second fundamental form atx € X

B:T2XT2Z - R, B(v,v) =k, (x)

A\

» X is totally umbilic if at each pointx € X, B = Ag
If M has constant curvature, 1 is constant on 2 , ,
sphere intersecting the boundary

t le 6 wh =41
> In particular, a totally umbilic hypersurface with 4 = 0 is totally geodesic atan angie v, where tOS

sphere intersecting the boundary
at a single point

Hyperbolic space H¢

Definition (Solanes) A=0 genuine geodesic hyperplanes

A A-geodesic hyperplane is a totally umbilic A € (0,1) equidistants from genuine geodesic hyperplanes
hypersurface with A € [0,1]. A=1 horospheres

- A>1 hyperbolic spheres




INTERLUDE: COXETER AND ESCHER

» M.C. Escher’s Circle Limit Il depicts a tessellation

of the hyperbolic plane
» Escher: the fish ,,... shoot up perpendicularly from the boundary ..."

» B. Ernst (The Magic Mirror of Escher): some arcs are not

... placed at right angles to the circumference (as they ought to be)”

The Magic Mirror of

M.C. ESCHER

TASCHEN




M.C. Escher’s depicts a tessellation

of the hyperbolic plane

the fish ,,... shoot up perpendicularly from the boundary ..."

(The Magic Mirror of Escher): some arcs are not

... placed at right angles to the circumference (as they ought to be)"”

(in a publication in Leonardo):

Leonardo, Vol. 12, pp. 19-25.
Pergamon Press, 1979. Printed in Great Britain.

THE NON-EUCLIDEAN
SYMMETRY OF ESCHER'S PICTURE
‘CIRCLE LIMIT III”

H. S. M. Coxeter**

Abstract—Of all Escher’s pictures with a mathematical background, the most sophisticated is his
1959 woodcut, Circle Limit III, which uses four colours in addition to black and white. Queues of
fishes of each colour are swimming along white arcs that cut the peripheral circle at a certain angle.
After discussing the kind of symmetry that is involved and the underlying regular tessellations ( so
cleverly disguised), the author explains why the above-mentioned angle is not 90° but 80°.

I. INTRODUCTION

I first met Escher [1] in September 1954, when an
exhibition of his work was sponsored by the
International Congress of Mathematicians, meet-
ing that year in Amsterdam. Throughout the
previous 17 years he had been making designs in
which a drawing of some animal (such as a fish or a
reptile or a bird) is repeated as on wallpaper, with
two remarkable innovations: the basic unit (usually
a single animal, or one half of a symmetrical animal
or two different animals juxtaposed) is repeated not
only by translations but also by other isometries (or
congruent transformations): rotations, reflections or
glide-reflections [2]; and the replicas ingeniously fit
together so that there are no interstices. In the
language of mathematics (a subject in which Escher
resolutely claimed to be ‘absolutely innocent of
training or knowledge’), the basic unit is a
fundamental region for a symmetry group.

In a letter of December 1958 he wrote: ‘Did I ever
thank you for sending me . . . “A Symposium on
Symmetry”? I was so pleased with this booklet and
proud of the two reproductions of my plane
patterns!

‘Though the text of your article on “Crystal
Symmetry and its Generalizations” [3] is much too
learned for a simple, self-made plane pattern-man
like me, some of the text-illustrations and especially
Figure 7, page 11, gave me quite a shock.

‘Since a long time I am interested in patterns with
“motives” getting smaller and smaller till they reach
the limit of infinite smallness. The question .is
relatively simple if the limit is a point in the centre of
a pattern. Also a line-limit is not new to mie, but I
was never able to make a pattern in which each

*This article is based on a lecture given in May 1978 at the
University of Siena, Italy, by request of the Dept. of
Mathematics there.

**Mathematician. University of Toronto. Toronto M5S 1A1,
Canada. (Received 18 Sept. 1978)

“blot” is getting smaller gradually from a centre
towards the outside circle-limit, as shows your
Figure 7 [reproduced here as Fig. 1]. I tried to find
out how this figure was geometrically constructed,
but I succeeded only in finding the centres and radii
of the largest inner-circles. If you could give me a
simple explanation how to construct the following
circles, whose centres approach gradually from the
outside till they reach the limit, I should be
immensely pleased and very thankful to you! Are
there other systems besides this one to reach a circle-
limit?

‘Nevertheless I used your model for a large
woodcut (of which I executed only a sector of 120°
in wood, which I printed 3 times). I am sending you
a copy of it. . . .".

This was his picture ‘Circle Limit I’, concerning
which he wrote on another occasion [4]: ‘The largest
animal figures are now located in the centre, and the
limit of the infinitely many and infinitely small is

Fig. 1. Pattern whose symmetry group is (6, 4, 2) (with
scaffolding). Two adjacent triangles (one white and one black)
form a fundamental region.




M.C. Escher’s

of the hyperbolic plane

the fish ,,... shoot up perpendicularly from the bc

(The Magic Mirror of Escher): some arcs are not

depicts a tessellation

Fig. 6. The angle of parallelism w

... placed at right angles to the circumference (as they ought to be)”

are

(in a publication in Leonardo): the arcs along with Esher’s fishes swim

He computed 1 =

/4 _

2—1/4

and deduced 0 ~

30°

I1(5).

. Coxeter
tanh o tanh ¢ cos(n/3) = 1 tanh. ¢

By equation (1), tanh 6 = cos w, and by equation

(2),

cosh? ¢ = (2+./2)/3,

tanh? @ = 1 —sech? ¢ =
1—3/(2+\/2) 3-2./2)/\/2.

tanh ¢ = (/2 —1)/4/2 = 21+-27"14

Hence,{tanh 0 = (2'4—-2-—1%)/2]and

w = [I(0) = arccos(2'+4-2"14)/2 =
arc cos 0-17417

Escher’s integrity is revealed in the fact that he
drew this angle correctly even though he apparently
believed that it ‘ought’ to be 90°.

whose angles are 60°. But this is absurd, as a triangle
with angles 60° would be Euclidean, not hyperbolic.

The above dlscussmn explains the aradox b




A ,: space of A-geodesic hyperplanes

(Santald, Gallego, Naveira, Solanes):

dA, = (cosh s — Asinh s)*~! dsdu

1,: Poisson process on the space A, with intensity measure dA,

distributional behavioras R — oc0?




‘AWJ.N\MN..J.,
5

4

NI
AZA

{3

\(H 0 By) A(dH)

)

ESg , = #“(Bg)
JA
X

ESp, =E ) #4'(HN By
Hen,
%d
= HU(B,



NN <t
1 Al Al
A~ EAS AN BN
T T T
S £ £ ¢
S 8 I
vV V V I
< < = =

eZ(d—l)R
Re(d_ 1)R

o
X
Re S
J\|\
= )(
S =
~ A
X —
S
[ >
~<
)
L]

Variance

Jolp

Expectat

)
<
Aqn
&5
-
T
1

X

\(H 0 By) A(dH)

%d

A




P
AR
L VYNS3

[ESR’AZ%CZ(BR) [ R A<land d=2
- V<R€2R :A<1and d=3
RAT ) ¢2@-DR - ) ~ 1 and d D!
(Re™™DR :)=1andd>2
Sp— ES
R R D
Suppose that and Then > 4°(0,1).




POISSON A-GEODESIC HYPERPLANES

Theorem (Kabluchko, Rosen, T. 2023 1JM): saSiiiae
CaddeE e s Sl N \ AN S A
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Sg—ESg b E o O
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Suppose that) < A < 1 andd < 3.Then > A(0,1). N )
\/Vﬁf SR

\
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Theorem (Kabluchko, Rosen, T. 2023 1JM):

Suppose that) < A < 1 andd > 4. Then >
e(d-2)R
| . Zinfinitely divisible (e
+ - kK (Z) =7/n(1 =A%) T
d-=2)¢ -1

~ non-Gaussian I >




POISSON A-GEODESIC HYPERPLANES

Theorem (Kabluchko, Rosen, T. 2023 1JM):
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Suppose that) < 1 < 1 and d < 3.Then > A(0,1).

\/Vﬁf SR

Theorem (Kabluchko, Rosen, T. 2023 IJM):

o(d=2)R

AN

Suppose that) < A < 1 andd > 4. Then

» Zinfinitely divisible >~ non-Gaussian

Theorem (Kabluchko, Rosen, T. 2023 1JM):

Sp—ES; D |
Suppose that 1 =1 and d > 2. Then > N 0,— ).
\/VflrSR 2




SOME IDEAS ABOUT THE PROOF (0 < 4 < 1)

/

Theorem (Kabluchko, Rosen, T. 2023 IJM):

Sp—[ES
Suppose that) <1 < l andd > 4. Then = K D>Z
o(d=2)R
» Z infinitely divisible » non-Gaussian
1. Consider the characteristic function of Fy:
. nR .
Yo (1) ;= Ee''r = exp( ["88S) — 1 — itgn(s)]p;(s) ds)
J_R

gp(s) = e~ =2Rg=1H(s) N Bp)

p;(s) = (cosh s — A sinh )

3. Justify step 2 by dominated convergence
This is possible exactly if d > 4

Define Fp = DR
o (d—

2. Try to interchange limit and integral

- Key geometric lemma

gr(s) — C,, cosh™@=2)(s — A)
A = artanh(4)

4. Observe that by the Lévy-Khintchin formula

the random variable Z is infinitely divisible
without Gaussian component



OUTLOOK

What is special aboutd =2,d =3 and d > 47
Theorem (Betken, Hug, T. 2023 SPA):

Consider k-dimensional totally geodesic subspaces. Ve < d Then 7 = 1 and CLT holds with usual rate
Intersect m of them — intersection process of oder m.

2k =d : Thenm € {1,2} and CLT holds with usual rate
Look at the sum of the [d — m(d — k)]-volumes.

2k=d+1: Thenm € {1,2,3} and CLT holds with slower rate
2k >d+1: CLT breaks down

Open problem: Characterize the limit
distribution for intersection processes.

The bigger picture: Stochastic geometry in non-Euclidean geometries
- Random polytopes
- Random tessellations

- Random graphs
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