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Let K1, . . . ,Km ⊂ Rn be convex bodies and α1, . . . , αm ≥ 0. Then

V(α1K1 + · · ·+ αmKm) =
m∑

i1,...,in=1

V(Ki1 , . . . ,Kin)αi1 · · ·αin .

The functionals V(·, . . . , ·) : (Kn)n → [0,∞) are symmetric, hence uniquely determined.
Existence of the expansion is proved for polytopes or smooth bodies first.

• Recursive description (polytopal case):

V(P1, . . . ,Pn) =
1
n

∑
(∗)

hPn(u) V(F(P1, u), . . . ,F(Pn−1, u)).

• Analytic description (smooth case):

V(K1, . . . ,Kn) =
1
n

∫
Sn−1

hKn(u) det
(
d2hK1(u), . . . , d

2hKn−1(u)
)
Hn−1(du).
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Mixed volumes



There are Borel measures S(K1, . . . ,Kn−1, ·) on Sn−1 such that

V(K1, . . . ,Kn) =
1
n

∫
Sn−1

hKn(u) S(K1, . . . ,Kn−1, du),

where hM(u) = max{⟨x , u⟩ : x ∈ M} is the support function of M ∈ Kn.

• Existence of these measures follows from the Riesz representation theorem (e.g.).

• Explicit descriptions are available if all bodies are polytopes or all are smooth.

• Polytopal case:
S(P1, . . . ,Pn−1, •) =

∑
(∗)

V(F(P1, u), . . . ,F(Pn−1, u)) δu(•).

• Smooth case:

S(K1, . . . ,Kn−1, •) =
∫
•
det

(
d2hK1(u), . . . , d

2hKn−1(u)
)
Hn−1(du).
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Special case (interpretation as relative or anisotropic surface area):

nV (K [n − 1], L) = lim
ε↓0

1
ε
(V(K + ε L)− V(K )) .

Theorem (Minkowski’s first inequality, 1903)
If K , L ∈ Kn, then

V(K [n − 1], L)n ≥ V(K )n−1 V(L)

with equality iff dimK ≤ n − 2 or K and L lie in parallel hyperplanes or K , L are homothetic.

The result follows from the Brunn–Minkowski inequality (1887, 1910) together with its equality cases:

V(K + L)
1
n ≥ V(K )

1
n + (L)

1
n .
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Another consequence of the Brunn–Minkowski inequality:

Therem (Minkowski’s second inequality)
If K , L ∈ Kn, then

V(K [n − 1], L)2 ≥ V(K ) V(L[2],K [n − 2]).

The equality cases are known (Bol 1943) but more involved.

Ignoring lower-dim. cases and assuming (wlog) that L ⊆ K , equality holds iff each support plane of K that is
not a support plane of L contains only boundary points x ∈ ∂K where dimN(K , x) ≥ 3.

This description is helpful, but . . .

Better: each (n − (n − 2)− 1) = 1-extreme support plane H(K , u) of K is a support plane of L.

Consider the unique face of a normal cone of K containing u in its rel. int. – the touching cone T (K , u).

Then u is 1-extreme if dimT (K , u) ≤ 2, i.e. there do not exist 3 lin. indep. normal vectors u1, u2, u3 at the
same boundary point of K with u = u1 + u2 + u3.
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Theorem (Minkowski/Alexandrov)
If K , L,M ∈ Kn are full-dimensional, then

V(K , L,M[n − 2])2 ≥ V(K [2],M[n − 2]) V(L[2],M[n − 2]).

This is no longer a consequence of the Brunn–Minkowski inequality, but requires a much deeper result.

A complete characterization of the equality cases was obtained by Shenfeld & van Handel ’22:

Equality holds iff there are x ∈ Rn, a > 0 such that hK (u) = haL+x(u) for all 1-extreme directions u of M.

Schneider ’79: The closure of the set of 1-extreme directions of M is the support of the (mixed) measure

S(M[n − 2],Bn, ·) = Sn−2(M, ·).
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Theorem (Alexandrov–Fenchel inequality, 1937)

Let K , L ∈ Kn. Let C = (C1, . . . ,Cn−2) be an (n − 2)-tuple in Kn. Then

V(K , L,C)2 ≥ V(K ,K ,C) V(L, L,C), (AFI)

where V(K , L,C) := V(K , L,C1, . . . ,Cn−2).

• For m ∈ {2, . . . , n} and Cn−m := (Cm+1, . . . ,Cn) ∈ (Kn)n−m, consider

fm : Kn ∋ L 7→ V(L[m], Cn−m)
1
m .

Then fm is concave. AFI is equivalent to f2 being concave. The same is true for f3.

• Equality cases? All known (involved) proofs work by approximation via special polytopes or smooth bodies.
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Zonoids are a special class of convex bodies, which often serve as in important test case. They also naturally
arise in various contexts, ranging from functional analysis to stochastic geometry.

• A zonotope is a finite Minkowski sum of segments (hence a very special centrally symmetric polytope).

• A zonoid is a limit of zonotopes. The unit ball Bn is a special zonoid.

• A convex body K ∈ Kn is a zonoid iff there is an even and finite Borel measure µ on Sn−1 such that

hK (u) =
∫
Sn−1

|⟨u, x⟩|µ(dx), u ∈ Rn.

The (generating) measure µ is uniquely determined.

• Projections, affine transformations and faces of zonoids are again zonoids.

• Zonoids are closed – but for n ≥ 3 nowhere dense – in the space of centrally symmetric convex bodies.
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Illustrations of zonoids
1) https://polytope.miraheze.org/wiki/Zonotope or https://polytope.miraheze.org/wiki/File:Uniform polyhedron-53-t012.png

2) A 3-dimensional zonotope composed of 132 rhombi. https://polytope.miraheze.org/wiki/Zonotope

3) Rörig, Witte, Ziegler: Zonotopes with large 2-D cuts. Discrete and Computational Geometry 42 (2009), 527–541.

4) https://www.decatur.de/personal/zono/index.html
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Theorem (Equality cases AFI, Shenfeld & van Handel ’23+)

Let K , L ∈ Kn. Let C = (C1, . . . ,Cn−2) be a supercritical (n − 2)-tuple of polytopes, zonoids or smooth convex
bodies in Rn such that V(K ,K ,C),V(L, L,C) > 0.

Equality holds in (AFI) iff there are a > 0 and x ∈ Rn such that hK = haL+x on supp S(Bn,C, ·).

Moreover, supp S(Bn,C, ·) = cl ext(Bn,C) if C are polytopes or C are zonoids/smooth bodies.

Some special cases known previously:

(C1, . . . ,Cn−2) strongly isomorphic, simple polytopes. [Sch 93]

(C1, . . . ,Cn−2) smooth (unique supporting hyperplanes). [Sch 90]

K , L centrally symmetric, (C1, . . . ,Cn−2) zonoids, full dimenions. [Sch 88]

M = C1 = . . . = Cn−2 [SvH 22].

Partial confirmations of general conjectures
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Aims

Extend and unify the class of bodies for which the equality cases in AFI can be characterized.

Introduce a suitable class of bodies (which might be studied further).

Describe geometrically the support of mixed area measures (for this class of bodies).
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Definition
Let k ∈ N.

k -topes Pn
k : polytopes in Rn with at most k vertices.

k -polyotope : finite Minkowski sum of k -topes.

k -polyoid : limit of k -polyotopes.

K ∈ Kn is a polyoid (a polyotope), if it is a k -polyoid (a k -polyotope) for some k ∈ N.

The class of k -polyoids in Rn equals the Minkowski class M(Pn
k ) of k -topes.

A 1-polyoid is just a singleton, a 2-polyoid is a zonoid and a 3-polyoid is a triangle body.
Each polytope P is a k -polyotope and hence a k -polyoid (for some k ).

Pn
k ⊂ Pn

ℓ for k < ℓ. Any k -polyoid is an ℓ-polyoid for k < ℓ.

There is a 3-polyoid which is not a zonoid, not a polytope, and neither smooth nor strictly convex
(the Minkowski sum of a triangle in R2 × {0} and a 2-dimensional ball in {0} × R2).
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Corollary

Let K ∈ Kn, n ∈ N0 and k ∈ N. Then the following are equivalent.
(a) K is a k -polyoid.
(b) There is a probability measure µ on Pn

k with compact support such that

hK =

∫
hP µ(dP). (1)

If (b) holds, then K is the limit of a sequence in posµ := pos suppµ (finite pos. comb. of sets from suppµ).

Special instance of a statement about Minkowski classes of homothety invariant closed classes of bodies.

The generating measure µ is not uniquely determined.
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Lemma

Let K∗ ⊆ Kn be a Borel set, n ∈ N0. Suppose that µ is a probability measure on K∗ with bounded support. Let
K ∈ Kn be defined by

hK =

∫
hP µ(dP). (2)

Then K is the limit of a sequence in posµ.

Definition

Each K ∈ Kn defined via (2), is called a K∗-macroid with generating measure µ.
If K∗ = Pn, then K is called a macroid with generating measure µ.

Comments
• Macroids have some nice properties (projections, faces, . . . ).
• Mean section / projection bodies, or SOn-convolution of hK , K fixed. Each polyoid is a macroid.
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How large is the class of macroids?

Theorem
The class of macroids is strictly larger than the class of a polyoids.

An explicit example of a convex body that is not a macroid is provided by a circular cone.

Theorem

Let K ∈ Kn be an indecomposable macroid. Then K is a polytope.
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Theorem

Let K , L ∈ Kn. Let C = (C1, . . . ,Cn−2) be a supercritical (n − 2)-tuple of macroids or smooth bodies in Rn.
Let V(K , L,C) > 0. Then AFI holds with equality iff there are a > 0 and x ∈ Rn such that

hK = haL+x on supp S(Bn,C, ·).

Equivalently:

Theorem

Let n ≥ 2. Let C = (C1, . . . ,Cn−2) be a supercritical (n − 2)-tuple of macroids or smooth bodies in Rn. Let f
be a difference of support functions. Then Sf ,C = 0 iff f is linear on supp S(Bn,C, ·).

Here: Sf ,C := S(f ,C, ·) = S(A,C, ·)− S(B,C, ·) if f = hA − hB .
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Lemma (Decomposition)

Assume that n ≥ 3. Let C be an (n − 3)-tuple in Kn, and let K ∈ Kn be a K∗-macroid with generating measure
µ. Suppose (K ,C) is supercritical and f is a difference of support functions. Then

Sf ,K ,C = 0 =⇒ Sf ,P,C = 0 for all P ∈ posµ.

Lemma [SvH 23+]
Equality cases in AFI are understood for (n − 2)-tuples of supercritical polytopes.

Lemma (Linear gluing)

Let n ≥ 3. Let C = (C1, . . . ,Cn−2) be an (n − 2)-tuple of K∗-macroids in Rn with generating measures
µ1, . . . , µn−2. Let f be a difference of support functions.

Assume that f is linear on supp S(Bn,Q, ·) whenever Q = (Q1, . . . ,Qn−2) ∈ pos(µ1, . . . , µn−2) with
spanQi = spanCi for i ∈ [n − 2].

Then f is also linear on supp S(Bn,C, ·).
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Definition

Let K ∈ Kn. If u ∈ Rn \ {0}, then N(K ,F(K , u)) is a closed convex cone containing u.
It has a unique face T (K , u) such that u ∈ relintT (K , u): the touching cone of K in direction u.

TS(K , u) := T (K , u)⊥ ⊆ u⊥ is the touching space of K in direction u.

The following is a version of the definition of extreme normal vectors.

Definition

If n ≥ 1 and C = (C1, . . . ,Cn−1) is an (n − 1)-tuple in Kn, then u ∈ Sn−1 is C-extreme if there are
1-dimensional linear subspaces of TS(Ci , u), for i ∈ [n − 1], with linearly independent directions.

The set of all C-extreme normal vectors is denoted by extC.
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Theorem [Support characterization]

Let C = (C1, . . . ,Cn−1) be an (n − 1)-tuple of polyoids or smooth bodies (provided at least one of the bodies is
also strictly convex) in Rn. Then

supp S(C, ·) = cl extC.

Theorem [Equality cases in AFI, geometric form]

Let K , L ∈ Kn. Let C = (C1, . . . ,Cn−2) be a supercritical (n − 2)-tuple of polyoids or smooth bodies in Rn.
Assume that V(K , L,C) > 0. Then AFI holds with equality iff there are a > 0 and x ∈ Rn such that

hK = haL+x on ext(Bn,C).
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Theorem [Monotonicity of mixed volumes]

Let K , L ∈ Kn satisfy K ⊆ L. Let C = (C1, . . . ,Cn−1) be an (n − 1)-tuple of polyoids or smooth bodies
(provided at least one of the smooth bodies is also strictly convex) in Rn. Then equality holds in

V(K ,C) ≤ V(L,C)

if and only if
hK = hL on extC.
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