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Disclaimer

Caveat emptor (Let the buyer beware)
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Outline

From “Sparse” to “Coarse”

Helly-type results

Open problems
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“Sparse” approximation

Consider

Idd =
m∑

i=1
ciui ⊗ ui =

m∑
i=1

ciuiui
T ,

where c1, . . . , cm are positive weights; u1, . . . , um are unit vectors
in Rd .

Problem:
For a given ε, find a smallest index set J such that

Idd
1 + ε

≺
∑
j∈J

c̃juj ⊗ uj ≺ (1 + ε)Idd

for some positive weights {c̃j}j∈J
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Intuition says d2...

Bourgain’95

k ≤ C(ε)d(ln d)3

Rudelson’99

k ≤ C d ln d
ε2

Breakthrough! BSS’14, MSS’15, FY’17

k ≤ C d
ε2
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What are the first steps?

Consider Idd =
m∑

i=1
ciui ⊗ ui

Qualitative Question:
What is the size of the smallest index set J such that

Idd
1 + λd

≺
∑
j∈J

c̃juj ⊗ uj ≺ (1 + λd)Idd

for some positive weights {c̃j}j∈J and some λd .

Answer: Trivial, the size is d .
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What the first steps give us quantitatively?

Quantitative Question:
What is the smallest λd such that

for any “John’s decompositions”
Idd =

m∑
i=1

ciui ⊗ ui one can find an index set J of size d and

positive weights {c̃j}j∈J satisfying

Idd
1 + λd

≺
∑
j∈J

c̃juj ⊗ uj ≺ (1 + λd)Idd

Answer or not:
... take the vectors by the “Dvoretzky–Rogers lemma”...
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John ellipsoid
1. K is a convex body in Rd

2. The John ellipsoid JK of K is the maximal volume ellipsoid
contained within K

3. Let 0 be the center of JK . Then

JK ⊂ K ⊂ d · JK
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John condition

K ⊂ Rd convex body.

John ’48 (+ Ball’92)
Assume Bd ⊆ K . TFAE:

1. Bd is the maximum volume ellipsoid contained within K
2. there are contact points u1, . . . , um ∈ bd Bd ∩ bd K and

positive weights c1, . . . , cm such that
m∑

i=1
ciui = 0 and

m∑
i=1

ciui ⊗ ui = Idd

G. Ivanov Coarse approximation 8 / 20



Outline

From “Sparse” to “Coarse”

Helly-type results

Open problems
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Classical result

Helly’1923∗

If the intersection of every d + 1 sets of a finite family of convex
subsets of Rd is nonempty, then the whole family has a nonempty
intersection.

Reduction assumption: All sets in our family are half-spaces!

Notation
For v ∈ Rd \ {0},

Hv =
{

p ∈ Rd : ⟨p, v⟩ ≤ 1
}

G. Ivanov Coarse approximation 10 / 20



Classical result

Helly’1923∗

If the intersection of every d + 1 sets of a finite family of convex
subsets of Rd is nonempty, then the whole family has a nonempty
intersection.

Reduction assumption: All sets in our family are half-spaces!

Notation
For v ∈ Rd \ {0},

Hv =
{

p ∈ Rd : ⟨p, v⟩ ≤ 1
}

G. Ivanov Coarse approximation 10 / 20



Classical result

Helly’1923∗

If the intersection of every d + 1 sets of a finite family of convex
subsets of Rd is nonempty, then the whole family has a nonempty
intersection.

Reduction assumption: All sets in our family are half-spaces!

Notation
For v ∈ Rd \ {0},

Hv =
{

p ∈ Rd : ⟨p, v⟩ ≤ 1
}

G. Ivanov Coarse approximation 10 / 20



Coarse approximation
Reduction assumption: All sets in our family are half-spaces!
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Coarse approximation
Reduction assumption: All sets in our family are half-spaces!

Qualitative Question:
How many half-spaces (facets) must we retain to ensure that the
intersection forms a bounded polytope?
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Coarse approximation
Reduction assumption: All sets in our family are half-spaces!

Quanlitative Question:
How many half-spaces (facets) must we retain to ensure that the
intersection forms a bounded polytope?

Helly-number: Sometimes we need 2d half-spaces — Cube!

Quantitative Question:
Given a convex polytope P in Rd , can one choose at most m ≤ 2d
facets of P in such a way that the volume of the intersection of
corresponding half-spaces is at most νd vold P.
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Results

Bárány, Katchalski, Pach’82
Let F be a finite family of convex subsets of Rd .
Then one can find at most m ≤ 2d sets F1, . . . , Fm of F satisfying

vold (F1 ∩ · · · ∩ Fm) ≤ νd vold
⋂

F
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Results

Naszódi’16
Let F be a finite family of convex subsets of Rd .
Then one can find at most m ≤ 2d sets F1, . . . , Fm of F satisfying

vold (F1 ∩ · · · ∩ Fm) ≤ νd vold
⋂

F
(
νd ≈ d10d

)
.

νd > dd/2
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Results

Naszódi’16
Let F be a finite family of convex subsets of Rd .
Then one can find at most m ≤ 2d sets F1, . . . , Fm of F satisfying

vold (F1 ∩ · · · ∩ Fm) ≤ νd vold
⋂

F
(
νd ≈ d10d

)
.

νd > dd/2

Brazitikos’18
Let F be a finite family of convex subsets of Rd .
Then one can find at most m ≤ 2d sets F1, . . . , Fm of F satisfying

diam (F1 ∩ · · · ∩ Fm) ≤ ηd diam
⋂

F
(
ηd ≈ d11/2

)
.

Extensive use of the John ellipsoid and the Dvoretzky–Rogers...!
G. Ivanov Coarse approximation 12 / 20



Containment in a homothet
Do we need the John ellipsoid in the proofs?
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Containment in a homothet
Do we need the John ellipsoid in the proofs?

NO!
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Containment in a homothet
What do we really use?
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Containment in a homothet
What do we really use?

1. Duality:

Polar set
The polar S◦ of a set S ⊂ Rd is the set

S◦ =
{

p ∈ Rd : ⟨p, x⟩ ≤ 1 for all x ∈ S
}
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Containment in a homothet
What do we really use?

1. Duality:

K =
⋂
i∈I

Hvi ⇐⇒ K ◦ = conv{vi : i ∈ I}
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2. Double-sided inclusion:

Λ conv{vi : i ∈ J} ⊃ K ◦ ⊃ conv{vi : i ∈ J}

⇓

vold
⋂

i∈J⊂I
Hvi ≤ |Λ|d vold K and diam

⋂
i∈J⊂I

Hvi ≤ |Λ| diam K
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Containment in a homothet
What do we really use?

1. Duality:

K − c =
⋂
i∈I

Hvi ⇐⇒ (K − c)◦ = conv{vi : i ∈ I}

K − c ⊂
⋂

i∈J⊂I
Hvi ⇐⇒ (K − c)◦ ⊃ conv{vi : i ∈ J}

2. Double-sided inclusion:

Λ conv{vi : i ∈ J} ⊃ (K − c)◦ ⊃ conv{vi : i ∈ J}

3. “Good center” c:

K − c ⊂ −d(K − c)

The center of the John ellipsoid is a good center, but there
are many others!
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Containment in a homothet: Double-sided inclusion

Naszódi and I.’22
Let S ⊂ Rd be such that conv S ⊂ −d conv S. Then there are
m ≤ 2d and v1, . . . , vm ∈ S such that

conv S ⊂ Λ conv{v1, . . . , vm},

where Λ = −15d3.
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Containment in a homothet: Double-sided inclusion

A-HAK lemma [Almendra–Hernández, Ambrus, Kendall’22]
Let S ⊂ Rd be such that conv S ⊂ −d conv S. Then there are
m ≤ 2d and v1, . . . , vm ∈ S such that
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Containment in a homothet: Double-sided inclusion

A-HAK lemma [Almendra–Hernández, Ambrus, Kendall’22]
Let S ⊂ Rd be such that conv S ⊂ −d conv S. Then there are
m ≤ 2d and v1, . . . , vm ∈ S such that

conv S ⊂ Λ conv{v1, . . . , vm},

where Λ = −3d2.

v1, . . . , vd form a maximum volume o-simplex, i.e.

max
w1,...,wd ∈S

vold conv{0, w1, . . . , wd} = vold conv{0, v1, . . . , vd}
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Extremal arrangement of half-spaces

Conjecture
Let {u1, . . . , u2d} be unit vectors in Rd . Then there is a point in
the set

2d⋂
i=1

{x ∈ Rd : ⟨ui , x⟩ ≤ 1}

with norm
√

d .

Follows from a theorem of Ball and Prodromou’09
Let u1, . . . , u2d be unit vectors in Rd . Then there is a point in the
set

2d⋂
i=1

{x ∈ Rd : | ⟨ui , x⟩ | ≤ 1}

with norm
√

d
2 .
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Good center: Macbeath point

Macbeath region
Take a point p ∈ K ⊂ Rd , the Macbeath region M(K , p) is the set

M(K , p) = K ∩ (−K + 2p)
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Good center: Macbeath point

Macbeath region
Take a point p ∈ K ⊂ Rd , the Macbeath region M(K , p) is the set

M(K , p) = K ∩ (−K + 2p)

Proposition
Let K be a convex body in Rd . There is a unique point p
maximizing the volume of the Macbeath region M(K , p).
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M(K , p) = K ∩ (−K + 2p)

Proposition
Let K be a convex body in Rd . There is a unique point p
maximizing the volume of the Macbeath region M(K , p).

Macbeath point
The Macbeath point of K is the unique maximizer of
vold M(K , p).
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Good center: Macbeath point

Macbeath region
Take a point p ∈ K ⊂ Rd , the Macbeath region M(K , p) is the set

M(K , p) = K ∩ (−K + 2p)

Macbeath point
The Macbeath point of K is the unique maximizer of
vold M(K , p).

Question:
Let p be the Macbeath point of a convex body K ⊂ Rd . Is it true
that

K − p ⊂ −d (K − p)?

G. Ivanov Coarse approximation 17 / 20



Colorful versions

Qualitative result. Puzzle:
Let finite families F1, . . . , F2d of convex sussets of Rd be such
that vold

⋂
F1 ≤ 1, . . . , vold

⋂
F2d ≤ 1.

Then there is a “rainbow” selection of sets F1 ∈ F1, . . . , F2d ∈ F2d
such that the volume of F1 ∩ · · · ∩ F2d is bounded.

Quantitative result:
We don’t know the Helly-number, i.e. the number of color classes!

The best we have 3d color classes (Damásdi, Földvári, Naszódi’21)!
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The best we have 3d color classes (Damásdi, Földvári, Naszódi’21)!
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Log-concave functions

Functional Bárány–Katchalski–Pach (Naszódi and I’22)
Let f1, . . . , fn be upper semi-continuous log-concave functions on
Rd . For every σ ⊆ {1, . . . , n}, let fσ denote the pointwise
minimum:

fσ(x) = min{fi(x) : i ∈ σ}.

Then there is a set σ ∈ {1, . . . , n} of at most 3d + 2 indices such
that ∫

Rd
fσ ≤ 100dd2d

∫
Rd

f{1,...,n}.

Problem:
We don’t know the Helly-number!
It is surely strictly less than 3d + 2
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Thank you!
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