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Introduction

Connection between various fields:

Stationary point processes,

Unimodular random graphs,

Unimodular discrete spaces,

Stationary random measures,

Scaling limits,

Borel equivalence relations.

Key property: The mass transport principle (MTP).
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1. Point Processes

Φ: A stationary point process on Rd .

i.e., a random discrete subset of Rd ,
s.th., @t P Rd : Φ` t „ Φ.

The Palm version of Φ:

Φ0 :“ Φ conditioned on containing 0,
or Φ seen from a typical point of Φ.
Formally:

E rhpΦ0qs “
1

λ
E

»

–

ÿ

xPΦXr0,1sd

hpΦ´ xq

fi

fl .

Heuristically, for a translation-invariant function gpΦ, xq,

E rgpΦ0, 0qs ÐÑ
ÿ

xPΦ

gpΦ, xq.
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1. Point Processes

Mecke’s formula:
For all measurable functions hpΦ0, xq ě 0 (for x P Rd):
E
“
ř

xPΦ0
hpΦ0, xq

‰

“ E
“
ř

xPΦ0
hpΦ0 ´ x ,´xq

‰

.

Let gpΦ0, x , yq :“ hpΦ0 ´ x , y ´ xq ñ

Theorem (MTP)

For all measurable functions gpΦ0, x , yq ě 0 that are translation-invariant:

E

«

ÿ

xPΦ0

gpΦ0, 0, xq

ff

“ E

«

ÿ

xPΦ0

gpΦ0, x , 0q

ff

.

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2023 3 / 34



2. Unimodular Graphs

G˚: The space of all rooted graphs pG , oq (o P V pG q) up to
isomorphisms.

rG , os: A random rooted graph.

It is called unimodular if

E

«

ÿ

xPG

gpG , o, xq

ff

“ E

«

ÿ

xPG

gpG , x , oq

ff

(MTP)

for all measurable functions gpG , x , yq ě 0 (for x , y P V pG q) that are
isometry-invariant.

Example:
1 Every finite graph G with a uniformly-random root o P V pG q.
2 Cayley graphs.
3 Example: Any graph constructed equivariantly on (the Palm version

of) a stationary point process.
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3. Unimodular Discrete Spaces

rD, os: A random rooted discrete metric space.

D should be boundedly-finite.

It is called unimodular if for all measurable functions gpD, x , yq ě 0
(for x , y P D) that are isometry-invariant,

E

«

ÿ

xPD

gpD, o, xq

ff

“ E

«

ÿ

xPD

gpD, x , oq

ff

. (MTP)

(Almost-) Unification of:

Unimodular graphs,
Palm version of stationary point processes,
Point-stationary point processes.
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4. Random Measures

Φ: A stationary random measure on Rd .

i.e., @t P Rd : Φ` t „ Φ.

Example: Every point process is a random measure.

Φ0: The Palm version of Φ,

or Φ seen from a typical point.
Heuristically:

E rgpΦ0, 0qs ÐÑ

ż

gpΦ, xqdΦpxq.

Theorem (MTP)

For all measurable functions gpΦ0, x , yq ě 0 that are translation-invariant:

E
„
ż

gpΦ0, 0, xqdΦ0pxq



“ E
„
ż

gpΦ0, x , 0qdΦ0pxq



.

This equation characterizes mass-stationary random measures.
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5. Scaling limits

Assume rGn, on,µns is such that

G n: A finite metric space,
on P Gn chosen uniformly at random,
µn: The counting measure on Gn.

Assume rεnGn, on, δnµns converges weakly.

Example:

Zd ñ Rd .
Random trees ñ Brownian continuum random tree.
Zeros of simple random walk ñ Zeros of Brownian motion.
Cayley graph ñ A locally-compact group.

We will see that there exists an MTP for the scaling limit.
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The Goals

Our goals:

A unification of the various versions of the MTP.

Generalizing Palm theory in order to use for studying the dimension of
scaling limits.
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Random Continuum Spaces

M˚:= The space of all pX , o, µq , where:

X is a metric space (and is boundedly-compact),
o P X (the root),
µ is a measure on X (and is boundedly-finite).

M˚ is a Polish space (with the GHP metric).

A random rmm space (rooted measured metric space):
A random element rX , o,µs in M˚.

E rf pX , o,µqs “
ż

M˚

f prX , o, µsqdPprX , o, µsq.
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Unimodular Continuum Spaces

M˚˚:= The space of all pX , o, p, µq.

p P X is called the second root.

rX , o,µs: A random rmm space.

Definition

rX , o,µs is a unimodular random rmm space if for all g :

E
„
ż

X
gpo, xqdµpxq



“ E
„
ż

X
gpx , oqdµpxq



,

where gpo, xq :“ gpX , o, x ,µq and g : M˚˚ Ñ Rě0 is measurable.

E
“

g`poq
‰

“ E
“

g´poq
‰
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Trivial Examples

When µ “ 0.

When µ “ δo .

Compact spaces:

rX ,µs: Any random compact measured metric space,
o P X random with distribution proportional to µ,
Then rX , o,µs is unimodular.

Compact unimodular spaces are re-rooting invariant.

In general, heuristically, the root is a typical point:

E rhpoqs ÐÑ
ż

X
hpyqµpdyq.
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Examples

(Palm version of) Stationary point processes,

rΦ0, 0, countingpΦ0qs.
rRd , 0, countingpΦ0qs. (Ñ no need to have supppµq “ X )

Point-stationary point processes,

Unimodular random graphs,

Unimodular discrete spaces,

(Palm version of) Stationary random measures,

Mass-stationary random measures.

Unimodular random manifolds (Abért and Biringer, 22).
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Examples: Weak Limits

Lemma

Any weak limit of a sequence of unimodular spaces is unimodular.

Corollary

Scaling limits are unimodular (under the assumptions already mentioned).

Corollary

All compact scaling limits have the re-rooting invariance property:
If o 1 P X is random with distribution proportional to µ, then
rX , o 1,µs „ rX , o,µs.
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Examples: Symmetric Spaces

Some symmetric spaces are unimodular:

rRd , 0,Lebs.

Every unimodular topological group (i.e., when the left and right
Haar measures are equal).

rHd , o, vols.

Every symmetric metric space (or manifold) with a unimodular
symmetry group (e.g., Hn or Sn),

or having an action of a unimodular group that is transitive and
measure preserving.
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Example: Deterministic Spaces

pX , µq: deterministic.

When can we find a random o P X s.th. rX , o, µs is unimodular?

Example: Quasi-transitive graphs.

Theorem: ... (a necessary and sufficient condition in terms of
AutpX , µq).

Example: A horoball.
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Subset Selection

Two equivalent definitions:

1 If A ĎM˚ is measurable, then
S :“ SpX , µq :“ ty P X : pX , y , µq P Au is called a factor subset.

2 A factor subset is a map pX , µq ÞÑ SpX , µq Ď X such that it is
isometry-equivariant and A :“ tpX , y , µq : y P SpX , µqu is measurable.

Lemma (Everything Happens at the Root)

If rX , o,µs is unimodular and S is a factor subset, then:

o P S a.s. ðñ µpX zSq “ 0 a.s. ,

P rµpSq ą 0s ą 0 ðñ P ro P Ss ą 0.

Corollary

o P supppµq a.s.
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Root-Change

rX , o,µs: unimodular

Assume for each pX , o, µq, a probability measure α “ αpX ,o,µq on X is
given (isometry-equivariant with some measurability property).

Let o 1 P X be chosen with distribution α.

Lemma
i rX , o 1,µs „ rX , o,µs if µ is a stationary measure for the Markovian

kernel on X .

ii This holds if f po, xq is the density of α w.r.t. µ at x and f ´poq “ 1
a.s., where f ´poq :“

ş

X f py , oqµpdyq.
iii If f po, xq is the density of α w.r.t. µ at x (if exists), then the density

of rX , o 1,µs w.r.t. rX , o,µs is f ´poq.

This generalizes Mecke’s theorem (invariance under bijective
point-shifts).
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Random Walk

Fix h0 such that h`0 p¨q “ 1 and h ą 0.

hpx , yq :“

ż

X

h0px , zqh0py , zq

h´0 pzq
dµpzq.

So, h`p¨q “ h´p¨q “ 1.

Let rX , o,µs be random.

Define a random walk pxnqn on X such that x0 “ o and
xn`1 „ hpxn, ¨qµ.

Theorem

rX , o,µs is unimodular if and only if pxnqn is stationary and reversible; i.e.,

rX , x1,µ, pxn`1qns „ rX , o,µ, pxnqs,

rX , o,µ, px´nqns „ rX , o,µ, pxnqs.
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Ergodicity

An event A is (root-change-) invariant if
rX , o, µs P Añ rX , y , µs P A,@y P X .

Definition: A unimodular rmm space rX , o,µs is ergodic when
P rAs P t0, 1u for every invariant event A.

Theorem (Ergodic Decomposition)

(i) rX , o,µs is ergodic if and only if the random walk pxnq is ergodic.

(ii) Every unimodular probability measure can be uniquely written as a
mixture of ergodic probability measures.
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Random Measures

rX , o,µ,Φs is a random element in M2
˚, where

M2
˚ :“ tpX , o, µ, ϕq : ϕ is a measure on X u.

Assume rX , o,µ,Φs is unimodular; i.e., the MTP holds when g
depends on Φ as well.

Theorem (Invariant Distintegration)

The conditional distribution given rX , o,µs has a version which does not
depend on o.

Non-dependence on the root Ø stationarity.

Definition

We say that Φ is an equivariant random measure on rX , o,µs.
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Examples

1 Φ “ µ or any factor of pX , µq.

2 The intensity measure of Φ is also an equivariant (factor) measure:
λpX , µq :“ E rΦpX , µqs.

3 Φ :“ the Poisson point process with intensity measure µ.
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Towards Palm

There is no r0, 1sd here!
The classical definition does not generalize.

Other definitions of Palm:
1 via the Campbell measure.
2 via a tessellation.
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Palm Via Tessellation

Φ: A stationary point process in Rd .

Equivariant tessellation: Assigning a cell to each point of Φ
equivariantly.

Fair tessellation: When all cells have equal volumes.

Theorem

If the cell of x P Φ contains 0, then Φ´ x „ Φ0.
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A Generalization
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A Generalization

Assume a function hpx , yq ě 0 is a function depending on Φ (as a
factor of Φ) such that

@y P Φ : h´pyq :“

ż

hpx , yqdx“ 1.

Example: Given a fair tessellation, let hpx , yq :“ λ if x P cellpyq.

Theorem

Palm of Φ is obtained by a biasing and shifting the origin to a point of Φ
chosen with distribution proportional to hp0, ¨q; i.e.,

P rΦ0 P As “
1

λ
E

»

–

ÿ

yPΦ

1ApΦ´ yqhp0, yq

fi

fl ,

where λ is the intensity of Φ.
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Palm on Unimodular Spaces

Assume h : M2
˚˚ Ñ Rě0 is such that for all pX , y , µ, ϕq,

h´pyq :“

ż

X
hpx , yqdµpxq “ 1 pif µ ‰ 0q.

Bias and choose a new root „ hpo, ¨qΦ; i.e.,

Definition

Define a measure Q on M2
˚ by:

QpAq :“ E
„
ż

X
1ApX , y ,µ,Φqhpo, yqdΦpyq



.

Define the intensity of Φ by λ :“ |Q| “ QpM2
˚q.

Define the probability measure P0 :“ 1
λQ (if 0 ă λ ă 8).

P0 is the distribution of the Palm version.
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Palm Via the Campbell Measure

Theorem (Campbell Formula)

For all measurable functions g ě 0 on M2
˚˚, by denoting

gpx , yq :“ gpX , x , y ,µ,Φq,

E
„
ż

X
gpo, yqdΦpyq



“ λE0

„
ż

X
gpx , oqdµpxq



.

In addition, P0 is the unique probability measure on M2
˚ with this property.

Corollary. Palm does not depend on the choice of h.
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Unimodularity of Palm

rX , o,µ,Φs unimodular.

Lemma

Under P0, rX , o,Φs is unimodular, and so is rX , o,Φ,µs.

Corollary

Under P0, the Palm of µ (as random measure on rX , o,Φs) is P.

Palm inversion = Palm
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Examples

If Φ “ µ|S , where S is a factor subset,

Palm = conditioning on o P S .

If Φ is the Poisson point process with intensity measure cµ,

Palm version is ΦY tou.
Planar Duals:

rG , os: a unimodular planar graph.
To make the dual G 1 of G unimodular:

X :“ G Y G 1,
µ :“ the counting measure of G ,
Φ :“ the counting measure of G 1,
it is enough to consider the Palm of Φ.

Adding vertices and edges to a unimodular graph (unimodular
extension) is an instance of Palm.
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Amenability

Let rX , o,µs be unimodular.

Theorem (Amenability)

The following are equivalent:

(i) There exists a local mean.

(ii) There exists an approximate mean.

(iii) Hyperfiniteness.

(iv) Folner condition.
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Mean

To (almost) every pX , o, µq, assign a map m : L8pX , µq Ñ R such
that:

m is a positive linear functional.
m is isomorphism-invariant.
@y P X : mpX ,o,µq “ mpX ,y ,µq.
Some measurability condition.

Definition: This is called a Local mean.

To (almost) every pX , o, µq, assign a sequence λn : X Ñ Rě0 such
that:

λn is isomorphism-invariant and measurable.
@y P X :

ş

X λnpy , ¨qdµ “ 1 a.s.
@y P X : ||λnpo, ¨q ´ λnpy , ¨q||1 Ñ 0 a.s.

Definition: This is called an approximate mean.
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Hyperfiniteness

To (almost) every pX , o, µq, assign a partition Π of X such that it is
invariant, measurable, and every element of Π has finite mass w.r.t. µ.

Allow Π to be random; e.g., depending on a random measure on
pX , o, µq.

Definition: This is called an equivariant finite partition.

Definition (Hyperfiniteness)

Three definitions:

1 D nested equivariant finite partitions Πn s.th. P r
Ť

n Πnpoq “ X s “ 1.

2 D nested equivariant finite partitions Πn s.th.
@r ă 8 : P rDn : Br poq Ď Πnpoqs “ 1.

3 @r ă 8,@ε ą 0, D an equivariant finite partition Π s.th.
P rBr poq Ę Πpoqs ă ε.
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Folner Condition

Definition

Two definitions:

1 @r ă 8,@ε ą 0, D, an equivariant finite partition Π s.th.

E
„

µpBrΠpoqq
µpΠpoqq



ă ε.

2 D equivariant nested finite partitions Πn s.th.

@r :
µpBrΠnpoqq
µpΠnpoqq

Ñ 0, a.s.
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Proof Method

Let Φ be the marked Poisson point process on X with intensity
measure µ.

Consider the Palm version of Φ.

This gives a countable Borel equivalence relation R and the Palm
distribution is an invariant measure.

We prove that each definition is equivalent to the analogous definition
for R.

We use the amenability theorem for Borel equivalence relations.
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Thank you!
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