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Basic definitions: reminder

Tessellations:

▶ A tessellation T in Rd is a system of convex
polytopes (cells), covering the space and having
disjoint interiors.

▶ T is face-to-face if for any t1, t2 ∈ T we have, that
t1 ∩ t2 is empty or is a face of t1 and t2.

▶ Fk(t) - set of all k-dimensional faces of a polytope t.
Define

Fk(T ) =
⋃
t∈T

Fk(t), 0 ≤ k ≤ d .

▶ T is called normal if any F ∈ Fk(T ) is contained in exactly d − k + 1 cells.

▶ T is called simplicial if all its cells are simplices.

Poisson point process η in Rd with intensity measure µ:

▶ ∀A ∈ B(Rd), η(A) ∼ Poi(µ(A));

▶ ∀ mutually disjoint subsets A1, . . . ,Am ∈ B(Rd), η(A1), . . . , η(Am) are independent.
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Poisson-Voronoi tessellation: construction

Let η be a PPP in Rd with intensity measure γ Lebd , γ > 0.

Voronoi cell of (nuclei) v ∈ η: V (v , η) := {z ∈ Rd : ∥z − v∥2 ≤ ∥z − v ′∥2 for all v ′ ∈ η}.

Poisson-Voronoi tessellation: Vd
γ := {V (v , η) : v ∈ η}.

Fact: Vd
γ is almost surely face-to-face, normal random tessellation and Vd

γ is stationary.
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Characteristics of stationary random tessellation

▶ T is a stationary random tessellation.

▶ k-cell intensity of T :

γk(T ) = E
∑

F∈Fk (T )

1{z(F , T ) ∈ [0, 1]d},

where z : {polytopes} × {tessellations} 7→ Rd be s.t.
z(t + x , T + x) = z(t, T ) + x for all x ∈ Rd .

▶ Typical cell of T : Z(T ) is a random polytope with distribution

Ptyp
T (·) = 1

γd(T )
E

∑
t∈T : z(t,T )∈[0,1]d

1{t − z(t, T ) ∈ ·}.

For Vd
γ we choose z(V (v , η),Vd

γ ) = v .

▶ Functions of interest:
▶ fk (Z(T )) – number of k-dimensional faces;

▶ Vj (Z(T )) – j-th intrinsic volume.
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Poisson-Voronoi tessellation Vd
γ : overview

Use simplified notation: Zd := Z(Vd
γ ), γk := γk(Vd

γ ).

▶ Trivial cases: γd = γ, EVd(Zd) = γ−1.

▶ Vd
γ is normal: (d − k + 1)γk = γEfk(Zd) and 2γ1 = (d + 1)γ0.

▶ Gilbert, 1962; Miles, 1970; Møller, 1989:

Ef0(Zd) =

⇒ γ0, γ1, Ef1(Zd),

EVd−1(Zd) = γ−1+ 1
d .

Define the function:

Jn,k
(
β + 1

2

)
= cn(n+2β)

∫∞
−∞(cosh u)−n(n+2β)−2

[
1
2
+ i

∫ u

0
cn+2β−1(cosh v)

n+2βdv
]n−k

du,

where cα = π− 1
2 Γ(α+3

2
)Γ(α+2

2
)−1.

▶ Kabluchko, Thäle, Zaporozhets, 2020; Kabluchko, 2021:

Efk(Zd) = C1(d)
(
d
k

)
Jd+1,d−k+1

(
− 1

2

)

⇒ γk .
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Poisson-Voronoi tessellation Vd
γ : f -vector

▶ Kabluchko, Thäle, Zaporozhets, 2020; Kabluchko, 2021:

Efk(Zd) = C1(d)
(
d
k

)
Jd+1,d−k+1

(
− 1

2

)
.

Idea of the proof:

▶ Suitable stochastic representation of Zd

(Zd)
o d
= conv(Πd,d)

⇒ fk(Zd) = fd−1−k(conv(Πd,d)),

where Πd,d is a PPP with intensity measure ∥x∥−d−1dx .

▶ Let X1, . . . ,Xn be i.i.d. points in Rd with density function

x 7→ π− d
2 Γ(d)Γ( d

2
)−1(1 + ∥x∥2)−d ,

and denote Pn,d := conv(X1, . . . ,Xn) – β′-polytope.

▶ Efd−1−k(conv(Πd,d)) = limn→∞ Efd−1−k(Pn,d)

+ exact formulas for Efd−1−k(Pn,d).

This approach doesn’t help to study expected intrinsic volumes of the typical cell.
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Sectional Poisson-Voronoi tessellation

Given a ℓ-dimensional affine subspace Lℓ ⊂ Rd define the intersection tessellation

Vd
γ ∩ Lℓ := {t ∩ Lℓ : t ∈ Vd

γ}.

Useful formula: EVd−ℓ(Zd) = γℓ(Vd
γ ∩ Lℓ)γ

−1.

Question: Is the sectional Poisson-Voronoi tessellation Vd
γ ∩ Lℓ a Voronoi tessellation?

Chiu, Van De Weygaert, Stoyan, 1996: ”The sectional Poisson-Voronoi tessellation is not
a Voronoi tessellation”.

Next question: How does the sectional Poisson-Voronoi tessellation look like?
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Poisson-Voronoi tessellation: graphical interpretation

Voronoi cell of (nuclei) v ∈ η:

V (v , η) := {z ∈ Rd : ∥z − v∥2 ≤ ∥z − v ′∥2 for all v ′ ∈ η}.

time,h

V

0.

space,v
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Voronoi cell of (nuclei) v ∈ η:

V (v , η) := {z ∈ Rd : ∥z − v∥2 ≤ ∥z − v ′∥2 for all v ′ ∈ η}.

▶ Cell V (v , η) ↔ paraboloid Πd
(v,0).

▶ Πd
(v,0) ∩ (L× R) ↔ Πℓ

(v̄,h) in L ∼= Rℓ.

time,h

p space,v
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Poisson-Voronoi tessellation: graphical interpretation

Generalized Voronoi cell of (v , h) ∈ ξ:

V ((v , h), ξ) := {z ∈ Rd : ∥z − v∥2 + h ≤ ∥z − v ′∥2 + h′ for all (v ′, h′) ∈ ξ}.

time,h

-...........

iv space,v
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Generalized Voronoi tessellation (Laguerre tessellation)

Let ξ be a PPP in Rd × E , E ⊂ R with intensity measure having density of the form

(v , h) 7→ γ f (h), γ > 0.

Laguerre cell of (v , h) ∈ ξ:

V ((v , h), ξ) := {z ∈ Rd : ∥z − v∥2 + h ≤ ∥z − v ′∥2 + h′ for all (v ′, h′) ∈ ξ}.

Denote L(ξ) := {V ((v , h), ξ) : (v , h) ∈ ξ, intV ((v , h), ξ) ̸= ∅}.
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Laguerre cell of (v , h) ∈ ξ:

V ((v , h), ξ) := {z ∈ Rd : ∥z − v∥2 + h ≤ ∥z − v ′∥2 + h′ for all (v ′, h′) ∈ ξ}.

Denote L(ξ) := {V ((v , h), ξ) : (v , h) ∈ ξ, intV ((v , h), ξ) ̸= ∅}.
Our models:

▶ ξ = ηβ , β > −1 is a PPP in Rd × [0,∞) with

f (h) = cd+1,β hβ , cd+1,β = π− d+1
2

Γ( d+3
2

+β)

Γ(β+1)
.

We denote Vd
γ,β = L(ηβ).

▶ ξ = η̃ is a PPP in Rd with

f (h) = eλh, λ > 0.

We denote Ṽd
λ = L(η̃).

A.G., Z. Kabluchko and C. Thäle, 2022: The collections Vd
γ,β and Ṽd

λ are normal random
tessellations and we call it β- and Gaussian-Voronoi tessellation, respectively.

Anna Gusakova How does the sectional Poisson-Voronoi tessellation look like? September 28, 2023 9 / 17



Generalized Voronoi tessellation (Laguerre tessellation)

Let ξ be a PPP in Rd × E , E ⊂ R with intensity measure having density of the form

(v , h) 7→ γ f (h), γ > 0.

Laguerre cell of (v , h) ∈ ξ:

V ((v , h), ξ) := {z ∈ Rd : ∥z − v∥2 + h ≤ ∥z − v ′∥2 + h′ for all (v ′, h′) ∈ ξ}.

Denote L(ξ) := {V ((v , h), ξ) : (v , h) ∈ ξ, intV ((v , h), ξ) ̸= ∅}.
Our models:

▶ ξ = ηβ , β > −1 is a PPP in Rd × [0,∞) with

f (h) = cd+1,β hβ .

We denote Vd
γ,β = L(ηβ).

▶ ξ = η̃ is a PPP in Rd with

f (h) = eλh, λ > 0.

We denote Ṽd
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Sectional Poisson-Voronoi tessellation

Theorem (A.G., Z. Kabluchko and C. Thäle, 2023)

For any ℓ-dimensional affine subspace Lℓ we have

▶ Vd
γ ∩ Lℓ

d
= Vℓ

γd ,(d−ℓ)/2−1 (up to isometry), where γd = π
d+1
2 Γ( d+1

2
)−1γ;

▶ Vd
γ,β ∩ Lℓ

d
= Vℓ

γ,(d−ℓ)/2+β (up to isometry) for any β > −1.
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β-Delaunay tessellation (definition via duality)

duality−−−→

β-Delaunay tessellation Dd
γ,β is dual of β-Voronoi tessellation of Vd

γ,β .
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duality−−−→

β-Delaunay tessellation Dd
γ,β is dual of β-Voronoi tessellation of Vd

γ,β .

▶ Center of cell z(V ((v , h), ηβ)) = v .

▶ Define D(y) := conv{v : y– vertex of V ((v , h), ηβ)}.
▶ Dd

γ,β = {D(y), y ∈ F0(Vd
γ,β)}.
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β-Delaunay tessellation (definition via duality)

duality−−−→

β-Delaunay tessellation Dd
γ,β is dual of β-Voronoi tessellation of Vd

γ,β .

Fact: Dβ is almost surely a simplicial random tessellations.
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Stochastic representation of the typical cell of Dd
γ,β

Theorem (A.G., Z. Kabluchko and C.Thäle, 2022)

We have Z(Dd
γ,β)

d
= R · conv(Y1, . . . ,Yd+1), where

(a) (Y1, . . . ,Yd+1) are random points, whose joint density is

(y1, . . . , yd+1) 7→ const · Vol(conv(y1, . . . , yd+1))
d+1∏
i=1

(1− ∥yi∥2)β1Bd (∥yi∥);

(b) R is a random variable on (0,∞) independent of (Y1, . . . ,Yd+1) with density:

r 7→ const · r (d+1)(d+1+2β)e−γ·const·rd+2+2β

.

Remark: Z(Dd
γ,β) is randomly rescaled volume-weighted beta simples;
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Alternative definition of Dd
γ,β

▶ Recall: Dd
γ,β = {D(y) : y ∈ F0(Vd

γ,β)}

D(y) = conv{v1, . . . , vd+1 : y– vertex of V ((vi , hi ), ηβ), 1 ≤ i ≤ d + 1}

⇐⇒ there is a constant hy s.t. a standard downward paraboloid with apex (y , hy )
contins points (vi , hi ), 1 ≤ i ≤ d + 1 on it’s boundary and no other points
of ηβ below its surface.
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Expected intrinsic volumes of the typical cell of Poisson-Voronoi tessellation

As a consequence of exact stochastic representation we have:

▶ Explicit formulas for EVd(Z(Dd
γ,β)) (via Gamma functions);

▶ Let
σ0(P) =

∑
y∈F0(P)

α(y ,P),

where α(y ,P) is the solid angle of P at y .Then

Eσ0(Z(Dd
γ,β)) =

(
d+1
k+1

)
Jd+1,1

(
β + 1

2

)
.

▶ γ0(Dd
γ,β) = Eσ0(Z(Dd

γ,β)).

Corollary (A.G., Z. Kabluchko and C. Thäle, 2023)

For any 0 ≤ j ≤ d we have

EVj(Z(Vd
γ )) = γ− j

d Jd−j+1,1

(
j−1
2

)
2d−j+1π

d−j
2

d(d−j)!

Γ(
(d−j+1)(d−1)

2
+1)

Γ(
(d−j+1)(d−1)+1

2
)

Γ( d
2
+1)

d−j+
j
d

Γ( d+1
2

)d−j

Γ(d−j+ j
d
)

Γ( j+1
2

)
.

EVj(Z(Vd
γ )) ⇐ γd−j(Vd

γ ∩ Ld−j) ⇐ γd−j(Vd−j
γd ,j/2−1)
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.

▶ γ0(Dd
γ,β) = Eσ0(Z(Dd

γ,β)).

Corollary (A.G., Z. Kabluchko and C. Thäle, 2023)

For any 0 ≤ j ≤ d we have
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)
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)
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d
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)
.

EVj(Z(Vd
γ )) ⇐ γd−j(Vd

γ ∩ Ld−j) ⇐ γd−j(Vd−j
γd ,j/2−1)
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For any 0 ≤ j ≤ d we have

EVj(Z(Vd
γ )) = γ− j

d Jd−j+1,1

(
j−1
2

)
2d−j+1π

d−j
2

d(d−j)!

Γ(
(d−j+1)(d−1)

2
+1)

Γ(
(d−j+1)(d−1)+1

2
)

Γ( d
2
+1)

d−j+
j
d

Γ( d+1
2

)d−j

Γ(d−j+ j
d
)

Γ( j+1
2

)
.

EVj(Z(Vd
γ )) ⇐ γd−j(Vd

γ ∩ Ld−j) ⇐ γd−j(Vd−j
γd ,j/2−1)

Anna Gusakova How does the sectional Poisson-Voronoi tessellation look like? September 28, 2023 14 / 17



Expected intrinsic volumes of the typical cell of Poisson-Voronoi tessellation

As a consequence of exact stochastic representation we have:

▶ Explicit formulas for EVd(Z(Dd
γ,β)) (via Gamma functions);

▶ Let
σ0(P) =

∑
y∈F0(P)

α(y ,P),

where α(y ,P) is the solid angle of P at y .Then

Eσ0(Z(Dd
γ,β)) =

(
d+1
k+1

)
Jd+1,1

(
β + 1

2

)
.

▶ γ0(Dd
γ,β) =

[
EVd(Z(Dd

γ,β))
]−1Eσ0(Z(Dd

γ,β)) = γd(Vd
γ,β).

Corollary (A.G., Z. Kabluchko and C. Thäle, 2023)
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High-dimensional limits

Corollary

For any d ≥ 2, 1 ≤ ℓ ≤ d − 1 and Lℓ ∈ A(d , ℓ) we have

EVℓ(Z(Vd
γ ∩ Lℓ)) =

dγ− ℓ
d

2Jℓ+1,1(
d−ℓ−1
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)π
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Γ( (ℓ+1)(d−1)+1
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Γ( ℓ+2
2
)

Γ(ℓ+ 1− ℓ
d
)

Γ( d+1
2
)ℓ+1

Γ( d
2
+ 1)ℓ+1− ℓ

d

.

Corollary

For any ℓ ∈ N and Lℓ ∈ A(d , ℓ) we have

,

where Jℓ+1,1(∞) is a solid angle of a regular ℓ-dimensional simplex.

Remark: Case ℓ = 1, 2 was obtained by Miles, 1984.

Observation: limd→∞ EVℓ(Z(Vd
γ ∩ Lℓ)) = EVℓ(Z(Ṽℓ

πe)).
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Connection between the models

Theorem (A.G., Z. Kabluchko and C.Thäle, 2023)

For any ℓ ∈ N, Lℓ ∈ A(d , ℓ) and every ball BR ⊂ Rd of radius R > 0 centered at the
origin we have

lim
d→∞

P
[ ⋃
t∈(Vd

γ∩Lℓ)

(
bdt ∩ BR

)
=

⋃
t∈Ṽℓ

πe

(
bdt ∩ BR

)]
= 1.

And Z(Vd
γ ∩ Lℓ)

d→ Z(Ṽℓ
πe) as d → ∞.
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▶ A. Gusakova, Z. Kabluchko and C. Thäle. The β-Delaunay tessellation I:
Description of the model and geometry of typical cells - Journal of Applied
Probability, 2022.

▶ A. Gusakova, Z. Kabluchko and C. Thäle. The β-Delaunay tessellation II: The
Gaussian limit tessellation - Electronic Journal of Probability, 2022.

▶ A. Gusakova, Z. Kabluchko and C. Thäle. Sectional Voronoi tessellations:
Characterization and high-dimensional limits - To appear in Bernoulli, 2023.

Thank you for attention!
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