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Blaschke’s affine surface area
I K ⊂ Rn a convex body of class C2

+ that contains the origin in the interior

Blaschke’s affine surface area:
as1(K) =

∫
∂K

Hn−1(K,x)
1

n+1 Hn−1(dx) =
∫
∂K

κo(K,x)
1

n+1 CK(dx)

I nK : ∂K → Sn−1 Gauss map; Hn−1(K, ·) Gauss–Kronecker curvature.
I κo(K,x) is the centro-affine invariant curvature that is related to the volume of a

centered ellipsoid Eo(K,x) that osculates the boundary ∂K at x, i.e.,

κo(K,x) =
(Vol(Eo(K,x))

Vol(Bn
2 )

)−2
= Hn−1(K,x)
〈nK(x),x〉n+1 .

I CK is the centro-affine invariant cone-volume measure on ∂K that is absolutely
continuous with respect to the Hausdorff measure Hn−1 with density

dCK
dHn−1 (x) = 〈nK(x),x〉.
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∫
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κo(K,x)
1
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I Extension of as1 to convex bodies K without curvature conditions: Petty (1985),
Leichtweiß (1988, 1989), Schütt & Werner (1990), Lutwak (1986, 1991),
Schütt (1993), Dolzmann & Hug (1995), Hug (1996).

I as1 is a upper semi-continuous and equi-affine invariant valuation.
Characterization of all such valuations by Ludwig & Reitzner (1999).

I Functional analogs as(s)
1 (f) for s-concave functions f of class C2 were defined by

Artstein-Avidan, Klartag, Schütt, Werner (2012) and asλ(ϕ) for log-concave
functions ϕ by Caglar & Werner (2014, 2015) and Caglar, Fradelizi, Guédon,
Lehec, Schütt, Werner (2016).
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General affine surface areas
I K ⊂ Rn a convex body that contains the origin in the interior

Lutwak’s Lp affine surface area: asp(K) =
∫
∂K

κo(K,x)
p

n+p CK(dx) for p > −n.

I The family of SL(n)-invariant surface area measures asp were introduced by
Lutwak (1996), for p ≥ 1, and subsequently extended and studied by:
Hug (1996, p ≥ 0), Meyer & Werner (2000, p < 0), Schütt & Werner (2002),
Werner & Ye (2008), Ludwig (2010), Ludwig & Reitzner (2010),
Haberl & Parapatits (2014), ...

I asp is a SL(n)-invariant valuation on all convex bodies that is positively
homogeneous of degree q = nn−pn+p . For p = n, asn is GL(n)-invariant and often
called the centro-affine surface.

I For p > 0, asp ∈ [0,+∞) is upper semi-continuous and q ∈ (−n, n) and
for p < 0, p 6= −n, asp ∈ (0,+∞] is lower semi-continuous and |q| > n.
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General affine surface areas
I K ⊂ Rn a convex body that contains the origin in the interior

Lutwak’s Lp affine surface area: asp(K) =
∫
∂K

κo(K,x)
p

n+p CK(dx) for p > −n.

Theorem (Ludwig & Reitzner, 2010). (Ann. of Math.)

Φ is a upper semi-continuous and SL(n)-invariant valuation of homogeneous degree
q ∈ [−n, n] if and only if{

for q = 0: Φ = C0 + C1 asn for q = n: Φ = C0Vol
for |q| < n: Φ = C1 asp for q = −n: Φ(K) = C0Vol(K◦)

for some C0, C1 ∈ R, C1 > 0 and p > 0 s.t. q = nn−pn+p .

q0

asn(K)
=asn(K◦), χ

n

Vol

−n

Vol(K◦)

n
(
1− 2

n+1

)
as1

−n
(
1− 2

n+1

)
asn2 (K)

=as1(K◦)

n
(
1 + 2

n+1

)
as− n

n+2

I Further generalizations to Orlicz affine surface areas were introduced and
characterized as natural SL(n)-invariant semi-continuous valuations by Ludwig
(Adv. Math., 2010) and Ludwig & Reitzner (Ann. of Math., 2010). A Hadwiger
type characterization of upper semi-continuous centro-affine invariant valuations
was established Haberl & Parapatits (JAMS, 2014).

I The affine surface area and its relatives also appear naturally in the asymptotic
optimal and random polytopal approximation of convex bodies (volume, number
of vertices, edges, ...): Bárány, Böröczky, Buchta, Calka, Chatterjee, Fodor,
Gusakova, Hoehner, Hug, Kabluchko, Lachièze-Rey, Larman, Ludwig,
Peccati, Reitzner, Rosen, Schneider, Schulte, Schütt, Thäle, Vu, Werner,
Yukich, ... and many more!
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The Floating Body
Definition. For δ > 0 the floating body of K is defined by

FδK =
⋂{

K ∩H− : Vol(K ∩H+) ≤ δ
}
.

I H±. . . closed half-spaces
I Vol. . . Lebesgue measure

I limδ→0+ FδK = F0K = K

I Fδ is equi-affine covariant, i.e.,
Fδ(AK + x) = A(FδK) + x
for A ∈ SL(n) and x ∈ Rn

FδK

K ∩H+

K
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(Schütt & Werner, 1990)
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Volume Derivative of the Floating Body
I The floating body construction can be traced back into the 19th century to

Dupin. Blaschke (1920s) used a version of Dupin’s floating body to introduce
the affine surface area as1 which was later generalized by Leichtweiß (1986).

Theorem (Schütt & Werner, 1990). (Math. Scand.)

lim
δ→0+

Vol(K)−Vol(FδK)
δ

2
n+1

= cn as1(K) = cn

∫
∂K

κo(K,x)
1

n+1 CK(dx).

I cn := (2π)−
n−1
n+1 Γ(n+3

2 )
2

n+1

I If K is a convex body that contains the origin in the interior, the polar body of K
is defined by K◦ = {y ∈ Rn : max{〈y,x〉 : x ∈ K} ≤ 1}.

I If K contains the origin in the interior we can conjugate the floating body with
polarity and define the centro-affine covariant operator F◦δK := (FδK◦)◦.

I F◦δK ⊃ K and limδ→0+ F◦δK = K and F◦δ (AK) = A(F◦δK) for all A ∈ SL(n).

Theorem (Meyer & Werner, 2000; Werner & Ye, 2008). (both Adv. Math.)

lim
δ→0+

Vol(F◦δK)−Vol(K)
δ

2
n+1

= cn as−n/(n+2)(K) = cn

∫
∂K

κo(K,x)−
1

n+1 CK(dx),

where K is a convex body of class C2
+ that contains the origin in the interior.
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Weighted Floating Bodies
Definition (Werner, 2002). The ϕ-weighted floating body of a convex body K ⊂ Rn
is Fϕδ K =

⋂
{K ∩H− : Volϕ(K ∩H+) ≤ δ}.

Lemma. Fϕδ K = {x ∈ K : mcdK,ϕ(x) ≥ δ} is the δ-superlevel set of
the minimal cap density function mcdK,ϕ(x) = min{Volϕ(K ∩H+) : x ∈ H+}.

I ϕ a strictly positive continuous function; Volϕ(A) =
∫
A
ϕ(x)λ(dx).

Fϕδ K

K

Lemma. Let K ⊂ Rn be a convex body. Then:
i) If ψ ≤ ϕ, then Fψδ K ⊂ F

ϕ
δ K.

If L ⊂ K is another convex body, then Fϕδ L ⊂ F
ϕ
δ K.

ii) If K is of class C2
+, then ‖h(K, ·)− h(Fϕδ K, ·)‖∞ ≤ Cδ

2
n+1 . Moreover,

lim
δ→0+

h(K,u)− h(Fϕδ K,u)
δ

2
n+1

= cnϕ(x)−
2

n+1Hn−1(K,x)
1

n+1 , for all u ∈ Sn−1

where x ∈ ∂K is the uniquely determined point with outer unit normal u.
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Volume Derivative of the Weighted Floating Bodies
Extension of the uniform case, ϕ = ψ ≡ 1, established by Schütt & Werner (1990):

Theorem(B., Ludwig, & Werner, 2018). K ⊂ Rn a convex body. (Trans. Amer. Math. Soc.)

lim
δ→0+

Volψ(K)−Volψ(Fϕδ K)
δ

2
n+1

= cn

∫
∂K

κo(K,x)
1

n+1ϕ(x)−
2

n+1ψ(x)CK(dx).

Theorem(B. & Werner, 2023+). If K a convex body of class C2
+ that contains the

origin in the interior, then
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δ→0+

Volψ(Fϕ,◦δ K)−Volψ(K)
δ

2
n+1

= cn

∫
∂K

κo(K,x)−
1
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2
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Volume Derivative of the Weighted Floating Bodies
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Projective Model of Spaces of Constant Curvature
I The classical spaces of constant curvature (e.g. spherical space, hyperbolic space)

can be model on Rn such that geodesics in the space of constant curvature are
affine line segments in Rn.
Beltrami (1900), Cartan (1930): a Riemannian metric is projective if and only if
it has constant curvature.

I The gnomonic projection is a diffeomorphism from the half-sphere model
Sn+ := {u ∈ Rn+1 : ‖u‖2 = 1 and un+1 > 0} or the hyperbolid model
Hn := {u ∈ Rn,1 : u ◦ u = −1 and un+1 > 0} to Rn given by

g(u) = 1
un+1

(u1, . . . , un).
It maps geodesics of Sn+ and Hn to affine line segments in Rn.

I In this way we can identify a spherical or hyperbolic convex body K with the
Euclidean convex body K := g(K) ⊂ Rn and the spherical or hyperbolic Lebesgue
measure in Rn is expressed by Volε = Volϕε , where ϕε(x) = (1 + ε‖x‖22)−

n+1
2 ,

with ε = +1 in the spherical case and ε = −1 in the hyperbolic case.
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Dual Convex Body / De Sitter Convex Bodies
I The dual body of spherical convex body K is defined by

K∗ := {v ∈ Sn : 〈u,v〉 ≥ 0 for all u ∈ K} =
⋂

u∈K
H+(u).

I The dual space of Hn is the de Sitter space dSn1 := {u ∈ Rn+1 : u ◦ u = 1}.
The dual body of a hyperbolic convex body K or a de Sitter convex body L is
defined by

K∗ := {v ∈ dSn1 : u ◦ v ≤ 0 for all u ∈ K} =
⋂

u∈K
H+(u),

L∗ := {u ∈ Hn : u ◦ v ≤ 0 for all v ∈ L} =
⋂

v∈L
H+(v).

K

−K∗

Sn

K∗

Sn
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Dual Convex Body / De Sitter Convex Bodies
I The dual space of Hn is the de Sitter space dSn1 := {u ∈ Rn+1 : u ◦ u = 1}.

The dual body of a hyperbolic convex body K or a de Sitter convex body L is
defined by

K∗ := {v ∈ dSn1 : u ◦ v ≤ 0 for all u ∈ K} =
⋂

u∈K
H+(u),

L∗ := {u ∈ Hn : u ◦ v ≤ 0 for all v ∈ L} =
⋂

v∈L
H+(v).

Rn

en+1
K K∗H(u)

H(v)
Hn

dSn1

u

v
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Volume of the Floating Body in Spaces of Constant Curvature
Theorem(B. & Werner, 2016/2018). Let K be a spherical, hyperbolic or de Sitter
convex body. (Adv. Math. / JDG)

lim
δ→0+

Volε(K)−Volε(FεδK)
δ

2
n+1

= cn

∫
∂K

Hε
n−1(K,u)

1
n+1 Volε∂K(du) =: cn Ωε

1(K).

I Volε∂K . . . (d− 1)-dimensional Hausdorff measure restricted to ∂K
∼= surface area measure of ∂K

I Hε
n−1(K, ·) generalized Gauss–Kronecker curvature of ∂K as a hypersurface.

S−

S+ Vol
s ≤

δ

FsδK
K
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Volume of the Floating Body in Spaces of Constant Curvature
Theorem(B. & Werner, 2016/2018). Let K be a spherical, hyperbolic or de Sitter
convex body. (Adv. Math. / JDG)

lim
δ→0+

Volε(K)−Volε(FεδK)
δ

2
n+1

= cn

∫
∂K

Hε
n−1(K,u)

1
n+1 Volε∂K(du) =: cn Ωε

1(K).

Theorem(B. & Werner, 2023+). Let K be a spherical, hyperbolic or de Sitter
convex body of class C2

+. Then

lim
δ→0+

Volε(Fε,∗δ K \K)
δ

2
n+1

= cn

∫
∂K
Hε
n−1(K,u)−

1
n+1 Volε∂K(du) =: cn Ωε

− n
n+2

(K).

I Fε,∗δ K = (FεδK∗)∗... floating body conjugated by duality mapping
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Space Limits 1/3

Theorem(B. & Werner, 2016/2018). K be a spherical, hyperbolic or de Sitter
convex body. (Adv. Math. / JDG)

lim
δ→0+

Volε(K)−Volε(FεδK)
δ

2
n+1

= cn

∫
∂K

Hε
n−1(K,u)

1
n+1 Volε∂K(du) =: cn Ωε

1(K).

I Let Spn(λ) be the space form of constant curvature λ ∈ R.

Theorem(B. & Werner, 2018). K ⊂ Spn(λ) a convex body. (JDG)

lim
δ→0+

Volλ(K)−Volλ(FλδK)
δ

2
n+1

= cn

∫
∂K

Hλ
n−1(K,u)

1
n+1 Volλ∂K(du) =: cn Ωλ

1(K).

I Moreover, if K ⊂ Rn is fixed, then
lim
λ→0

Ωλ
1(K) = as1(K) =

∫
∂K
Hn−1(K,x)

1
n+1 Vol∂K(dx) =

∫
∂K
κo(K,x)

1
n+1 CK(dx)
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State of the Art ∫
∂K
Hε

n−1(K)
1

n+1 dVolε
∂K

∫
∂K
Hn−1(K)

1
n+1 dVol∂K

=
∫

∂K
κo(K)

1
n+1 dCK

Sn,Hn, dSn1 [λ = ε = ±1] :

Spn(λ), Spn1 (λ)[λ 6= 0]:

Rn[λ = 0]:

Fεδ , Ωε
1

Fλδ , Ωλ
1

Fδ, as1
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Space Limits 2/3
Theorem(B. & Werner, 2023+). K ∈ Spn(λ) a convex body of class C2

+.

lim
δ→0+

Volλ(Fλ,∗δ K)−Volλ(K)
δ

2
n+1

= cn
λ

∫
∂K
Hλ
n−1(K,u)−

1
n+1 Volλ∂K(du).

I We see the duality ∗ as a mapping between Spn(λ)→ Spn(1/λ) for λ > 0, and
between Spn(λ) and Spn1 (1/λ) for λ < 0.

K
K∗

1√
λ
Sn

√
λSn
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Space Limits 2/3
Theorem(B. & Werner, 2023+). K ∈ Spn(λ) a convex body of class C2

+.

lim
δ→0+

Volλ(Fλ,∗δ K)−Volλ(K)
δ

2
n+1

= cn
λ

∫
∂K
Hλ
n−1(K,u)−

1
n+1 Volλ∂K(du).

Corollary. Let K ⊂ Rn be a convex body of class C2
+. Then, for δλ = κn−1λ

n+1
2 δ,

lim
λ→0
Fλ,∗δλ K = IV1

δ K = {x ∈ Rn : |V1(conv(K,x))− V1(K)| ≤ δ}.

Moreover: lim
δ→0+

Vol(IV1
δ K)−Vol(K)
δ

2
n+1

= dn

∫
∂K

Hn−1(K,x)−
1

n+1 Vol∂K(dx). (�)

I IV1
δ is a special case of the separation body introduced by Schneider (2020) and

can also be seen as aV1-illumination body introduced by Werner (1994).

I (�) was communicated to Schneider by Olaf Mordhorst.
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State of the Art ∫
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1
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Sn,Hn, dSn1 [λ = ε = ±1] :

Spn(λ), Spn1 (λ)[λ 6= 0]:

Rn[λ = 0]:

Fεδ , Ωε
1

∫
∂K
Hε

n−1(K)
− 1

n+1 dVolε
∂K

∫
∂K
Hn−1(K)

− 1
n+1 dVol∂K

∫
∂K
κo(K)

− 1
n+1 dCK

Fε,∗δ , Ωε
− n
n+2

Fλ,∗δ , Oλ− n
n+2
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δ , O− n

n+2
F◦δ , as− n

n+2

Fλδ , Ωλ
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A Notion of Polarity Dependent on a Fixed Point
I The duality ∗ as a mapping from Spn(λ) to Spn(1/λ), respectively Spn1 (1/λ),

does not depend on a fixed point. Thus it is no surprise that in the limit λ→ 0
we obtain a translation invariant curvature measure.

Definition. For λ 6= 0 and e ∈ Spn(λ) fixed we consider the e-polarity operator from
Spn(λ) to Spn(λ) that is defined for a convex body K that contains e in the interior
(and is contained in the open half space around e if λ > 0) by

Ke := Gλe(K∗), where Gλe(u) = 1√
|λ|

v
‖v‖ for v =

λ
u
〈u,e〉 + (1− λ)e λ > 0

λ u
u◦e + (1 + λ)e λ < 0

.

I For λ = ε = ±1 we have Gεe(u) = u and Ke = K∗.
I Conjugating the λ-floating body in Spn(λ) gives: Fλ,eδ K := (FλδKe)e.
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Space Limits 3/3

Theorem(B. & Werner, 2023+). K ∈ Spn(λ) a convex body of class C2
+ that

contains e in the interior. Then

lim
δ→0+

Volλ(Fλ,eδ K)−Volλ(K)
δ

2
n+1

= cn

∫
∂K

(
Hλ
n−1(K,u)

fλe (K,u)n+1

)− 1
n+1

fλe (K,u) Volλ∂K(du)︸ ︷︷ ︸
=:Ωλ− n

n+2
(K)

,

where fλe (K,u) =
√∣∣∣∣ λ+ [tanλ dλ(e, H(K,u))]2

1 + λ[tanλ dλ(e, H(K,u))]2

∣∣∣∣.
I dλ geodesic distance on Spn(λ); H(K,u) hyperplane tangent to K at u ∈ ∂K.

I tanλ α =


tan(
√
λα)√
λ

λ > 0,
α λ = 0,
tanh(

√
−λα)√
−λ λ < 0,
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− n
n+2

= Ωε
− n
n+2

is independent of e.

I Moreover, if K ⊂ Rn is fixed, then
lim
λ→0

Ωλ,o
− n
n+2

(K) = as− n
n+2

(K) =
∫
∂K

κo(K,x)−
1

n+1 CK(dx)
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Hε

n−1(K)
− 1

n+1 dVolε
∂K

∫
∂K
Hn−1(K)

− 1
n+1 dVol∂K

∫
∂K
κo(K)

− 1
n+1 dCK

Fε,∗δ , Ωε
− n
n+2

Fλ,∗δ , Oλ− n
n+2

Fλ,eδ , Ωλ,e
− n
n+2

IV1
δ , O− n

n+2
F◦δ , as− n

n+2

Fλδ , Ωλ
1

Fδ, as1
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Properties of weighted Lp-affine surface area

Theorem(B. & Werner, 2023+). For the (ϕ,ψ)-weighted surface area, defined by
Ω− n

n+2
(K;ϕ,ψ) =

∫
∂K

κo(K,x)−
1

n+1ϕ(x◦)−
2

n+1ψ(x)CK(dx), we have:

I For A ∈ SL(n) we have that

Ω− n
n+2

(AK;ϕ ◦A>, ψ ◦A−1) = Ω− n
n+2

(K;ϕ,ψ)

I It is a valuation and lower semi-continuous on convex bodies of class C2
+ that

contain the origin in the interior. [Schütt, 1994 / Ludwig, 2001 + 2010]

I For a convex body K of class C2
+ that contains the origin in the interior we have

the polarity formula: [Hug, 1996]

Ω− n
n+2

(K;ϕ,ψ) =
∫
∂K◦

κo(K◦,y)
n+2
n+1 ψ(y◦)ϕ(y)−

2
n+1 CK◦(dy).
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Proof: Volume of Floating Body conjugated by Polarity
Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class C2

+ that
contains ed+1 in the interior and/or is contained in the interior of H+(ed+1).

lim
δ→0+

Volε(Fε,∗δ K \K)
δ

2
n+1

= lim
δ→0+

Volϕε(Fϕε,◦δ K)−Volϕε(K)
δ

2
n+1

= cn

∫
∂K

κo(K,x)−
1

n+1
ϕε(x)
ϕε(x◦)

2
n+1

CK(dx)

=

cn

∫
∂K

κo(K,x)−
1

n+1

∣∣1 + ε〈nK(x),x〉−2∣∣∣∣1 + ε‖x‖22
∣∣n+1

2
CK(dx)

Lemma. g(K∗) = −εK◦. Thus g(Fε,∗δ K) = Fϕε,◦δ K.

Florian Besau, TU Wien



Proof: Volume of Floating Body conjugated by Polarity
Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class C2

+ that
contains ed+1 in the interior and/or is contained in the interior of H+(ed+1).

lim
δ→0+

Volε(Fε,∗δ K \K)
δ

2
n+1

= lim
δ→0+

Volϕε(Fϕε,◦δ K)−Volϕε(K)
δ

2
n+1

= cn

∫
∂K

κo(K,x)−
1

n+1

∣∣1 + ε〈nK(x),x〉−2∣∣∣∣1 + ε‖x‖22
∣∣n+1

2
CK(dx)

=

cn

∫
∂K

Hε
n−1(K,x)−

1
n+1 Volε

∂K
(dx).

Florian Besau, TU Wien



Proof: Volume of Floating Body conjugated by Polarity
Proof. Let K be a spherical, hyperbolic or de Sitter convex body of class C2

+ that
contains ed+1 in the interior and/or is contained in the interior of H+(ed+1).

lim
δ→0+

Volε(Fε,∗δ K \K)
δ

2
n+1

= lim
δ→0+

Volϕε(Fϕε,◦δ K)−Volϕε(K)
δ

2
n+1

= cn

∫
∂K

κo(K,x)−
1

n+1

∣∣1 + ε〈nK(x),x〉−2∣∣∣∣1 + ε‖x‖22
∣∣n+1

2
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cn

∫
∂K

Hε
n−1(K,x)−

1
n+1 Volε

∂K
(dx).

Theorem (B. & Werner, 2018). (JDG)

If x ∈ ∂K is a normal boundary point, then

Hε
n−1(K,x)

1
n+1 = κo(K,x)

1
n+1

√
1 + ε‖x‖22

1 + ε〈nK(x),x〉−2 , and

dVolε
∂K

dCK
(x) =

√
1 + ε〈nK(x),x〉−2

(1 + ε‖x‖22)n/2
.
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