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Motivation

R.J.G., A positive answer to the Busemann-Petty problem in three dimensions, 
Ann. of Math. Soc. (2)  140 (1994),  435-447.
G. Zhang, A positive answer to the Busemann-Petty problem in four dimensions, 
Ann. of Math. Soc. (2)  149 (1999),  535-543.
R.J.G., A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty 
problem on sections of convex bodies, Ann. of Math. Soc. (2)  149 (1999),  691-703.
F. Barthe, M. Fradelizi, and B. Maurey, A short solution to the Busemann-Petty problem, 
Positivity 3 (1999),  95-100.

(parallel) X-ray of K 
in the direction u

(n-1)-dimensional X-ray of K in the direction u

Point X-rays and discrete X-rays will not be discussed!



where H is a hyperplane.  Case n = 2 is similar.                          
Radon transform:                              

Suppose that f is a bounded measurable function 
on      that vanishes outside a bounded measurable 
set.  If                then
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X-Ray Transform

( )( ) ( ) ,   

      
uX f x f x tu dt x u⊥= + ∈∫



      J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte 
längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig 
Math.-Phys. Kl. 69 (1917), 262-267.

1,nu S −∈

is the X-ray transform of f in the direction u.

Uniqueness Theorem.  Let f  be as above and let D       
be an infinite subset of Sn-1.  If Xu f  = 0 for all u in   
D, then f  = 0 a.e.

n


Johann Radon
(1887 - 1956)

( ) ( ) ,  

      
H

f H f y dy= ∫
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Projection-Slice Theorem
The  (one-dimensional) Fourier transform of the X-
ray transform of a function g(x,y) at a given angle 
equals the slice of the (two-dimensional) Fourier 
transform of g at the same angle.

g(x,y)
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y
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Allan MacLeod Cormack 
physicist

(1924 - 1998)

Godfrey Newbold Hounsfield 
engineer

(1919 - 2004) 

(Work published in 1963 to 1973)

1979 Nobel Prize in Medicine



Let K be a bounded Borel subset of     .  For u in 
Sn-1,  XuK := Xu1K  is the (parallel) X-ray of K in 
the direction u.

6

Parallel X-rays

K KX u

⊥u

u

n


The Uniqueness Theorem for the X-ray transform fails 
when the set D is finite, even for quite special classes of 
characteristic functions.

Steiner symmetral
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P. C. Hammer’s (Parallel) X-
Ray Problem, 1963

u

K

XuK

      R.J.G. and P. McMullen, On Hammer’s X-ray problem,  J. London Math. 
Soc. (2)  21 (1980), 171-175.

Corollary: Certain sets of 4 directions suffice.



 R.J.G. and M. Kiderlen, A solution to Hammer's X-ray reconstruction 
 problem, Adv. Math. 214 (2007), 323-343.
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Good Sets of 4 Directions
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 A set of 4 directions such that the cross ratio of 
the slopes is a transcendental number.

 A set of 4 directions whose rational slopes do not 
have a cross ratio equal to 2, 3, or 4 (in any 
ordering).

R.J.G. and P. Gritzmann, Discrete tomography: Determination of finite 
sets by X-rays,  Trans. Amer. Math. Soc.  349 (1997),  2271-2296.
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Open Problem 1
   ([G, Problem 2.1], X-rays in higher dimensions.)  Are 

convex bodies in      determined by any set of 7 X-rays in 
directions in general position (no 3 in a plane)? 

3


(with Jörg Wills: 
       

Oberwolfach 1982 or 1984)
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Outside Mathematics, Who Cares?
Rafal Dunin-Borkowski, physicist at the
Ernst-Ruska-Centre for Microscopy and 
Spectroscopy with Electrons Institute for 
Microstructure Research, Jülich,
Germany.

HAADF (High-Angle Annular Dark-
Field) electron tomography of platinum 
catalyst nanoparticles. 

5 nanometers = 5 x 10-9 meters
5 nm

      A. Alpers, R.J.G, S. König, R. S. Pennington, C. B. Boothroyd, L. Houben, 
R. Dunin-Borkowski, and K. J. Batenburg, Geometric reconstruction 
methods in electron tomography,  Ultramicroscopy  128 (2013), 42-54.
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Nanowire Reconstructions

SIRT:  Simultaneous Reconstruction Technique: algebraic, 
computes X-rays for all angles in each iteration.
DART:  Discrete Algebraic Reconstruction Technique: pixel 
based, uses e.g. SIRT as subroutine, only boundary pixels 
change at each step.

GKXR:  Gardner-Kiderlen X-ray algorithm.U-FBP:  Unfiltered Back-Projection: Backproject the 
object’s shadows (intesection of the corresponding strips).
MPW:  Modified Prince-Willsky: Least-squares fit to support 
function values (obtained from the X-rays).
2n-GON:  Uses width function values (obtained from X-
rays) to fit a regular 2n-gon for small n.
GKXR uses only angles 1°, 28°, 91°, 118°. All other 
algorithms use angles 1°, 2°, …, 140°.



      F. Keinert, Inversion of k-plane transforms and applications in computer 
tomography, SIAM Rev. 31 (1989), 273-298.

^^( ) ( ) ( ) .,   
      

SX f x f x x S ⊥= ∈

Suppose that f is a bounded measurable function 
on      that vanishes outside a bounded measurable 
set.  If 1 ≤ k ≤ n-1 and                    then
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k-Plane Transform

( )( ) ( ) ,    

      
S S

X f x f x y dy x S ⊥= + ∈∫
( , ),S n k∈

is the k-plane transform of f parallel to S.

Uniqueness Theorem.  If                             where

n


S. Helgason,
1959 (?)

Central Slice Theorem. 

k = 1 → X-ray transform 

 k = n-1 ~ Radon transform

0,  ,
mSX f m= ∈

,
    

,  
  

mS m⊥ ∈ are not contained in a proper algebraic 
variety, then f = 0 a.e. 

There are infinite families of subspaces providing uniqueness. 



Let K be a bounded Borel subset of     . If 1 ≤ k ≤ 
n-1 and                    then XSK = XS1K  is the k-
dimensional X-ray of K parallel to S.

13

Higher-Dimensional X-rays

K

S ⊥

n


Pyramid and tetrahedron with equal 2-dimensional X-rays

Schwarz symmetral

( , ),S n k∈

S ⊥
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Unsolved Problems 
Some examples of problems on X-rays still open:

• [G, Problem 2.5]  Are there finite sets of directions such that a 
convex body in      is determined by its 2-dimensional X-rays 
orthogonal to these directions?

• [G, Problem 2.5]  Are there finite sets of directions such that a 
convex polytope in      is successively determined by its 2-
dimensional X-rays orthogonal to these directions?  (Three 1-
dimensional X-rays suffice in      and two suffice in    .)

• [G, Problem 2.4] Can planar convex bodies be successively 
determined by 3 X-rays?

3

n

R.J.G. and P. Gritzmann, Successive determination and verification of 
polytopes by their X-rays,  J. London Math. Soc. (2)  50 (1994),  375-391.

2 3



    (Problem of Klee, 1969.)  Maximal section function alone does not 
suffice, even for balls:

Open Problem (Bonnesen, 1926).  Do the brightness function and 
maximal section function together determine every convex body, 
up to translation and reflection in the origin?

   

15

Maximal Section Function

Suppose    
that  n  ≥ 3.

   

Even open for balls.

1( ) max ( ( ))K t nm u V K u tu⊥
−∞< <∞ −= ∩ +

u

      F. Nazarov, D. Ryabogin, and A. Zvavitch, An asymmetrical convex body with 
maximal sections of constant volume, J. Amer. Math. Soc. 27 (2014), 43-68.

Inner Quermass, HA-measurement (de Haas-van Alpen effect, Fermi surfaces)



If K is a convex body in      and p ≠ 0, define
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(n-1)-dim.-X-Ray pth Mean Bodies

( )
1/

11 ( ( ))  ,      ,
( )

      

p

p
p n

E K
K

u V K u dt S
w u

tu uρ ⊥ −
+

 
= ∩ ∈

 
∫


and

n


( ) ( )0

11exp log ( ) ,      ,

      

n
E K u

K

u X K t dt u S
w u

ρ ⊥
− 

= ∈  
 

∫


( ) { }max ( ) : ( ).    

      
E K Ku

u X K t t m uρ ⊥
∞

= ∈ =

By Jensen’s inequality,

1( ) ,   1 ,     
      

o
p qV K D K E K E K E K E K CK p q∞= ⊂ ⊂ ⊂ = ≤ ≤

( ) ( )
1

1 1 1( ) ( ) ( ) .    

      
oE K K DK D K

V K u w h uu uρ ρ− − −= = =
where CK is the cross-section body of K, since

H. Martini, 1992; C. M. Petty, 1952



( ) ( )
1

1 1 1( ) ( | ) ( ) .    

      
oS K K K

V K u V K u h u uρ ρ
−

− ⊥ − −
Π Π

= = =

If K is a convex body in      and 0 ≠ p  ≥ -1, define
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Spectral pth Mean Bodies

( )
1/

1 1

|

1 ( )  ,      ,
( )

      

p

p
p n

S K uK u
u X K y dy u S

V K
ρ

⊥

+ − 
= ∈ 

 
∫

n


( )
0 |

1exp ( ) log ( ) ,   
( )

      

S K u uK u
u X K y X K y dy

V K
ρ

⊥

 
=  

 
∫

( ) { }max ( ) : | .    

      
S K uu X K y y K uρ

∞

⊥= ∈Then
1( ) ,     ,     

      

o
p qV K K S K S K S K S K DK p q− ∞Π = ⊂ ⊂ ⊂ = <

Could prove that SpK is an o-symmetric convex body 
when p ≥ 0 and retrieve the Rogers-Shephard and Zhang 
projection inequalities.

since

*Following D. Langharst



1/( 1) ,    0 -1,     
      

p
p pR K p S K p−= + ≠ >

If K is a convex body in      and p ≠ 0, define

10/10/2023 18

Radial pth Mean Bodies

( ) ( ) ( )
1/

11 ,  ,      ,

      

p

p
p n

R K KK
u x u dx u S

V K
ρ ρ − 

= ∈  
 

∫
etc.

n


shape of RpK→ S-1K as p → -1, and
,   -1 .    

      
p qR K R K R K DK p q∞⊂ ⊂ = < ≤

Moreover,

u

( , )K x uρ K
x

( ) ( ) ( )( )( )1/
1 1

0
  ,      .

      

DK

p

pu p n
R K Ku pV K g ru r dr u S

ρ
ρ − −= ∈∫

      R.J.G. and G. Zhang, Affine inequalities and radial mean bodies,  Amer. J. 
Math. 120 (1998), 505-528.

Then
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The Covariogram

K

xK +

x

.1,1    |),|1|)(|1()( ≤≤−−−= yxyxxgKK=[0,1]2: 
   
    

))(()( xKKVxgK +∩=

 1 ( )1 ( ) 1 1 ( )
n

K K K Kz z x dz x−= − = ∗∫
 G. Matheron, Random Sets and Integral   

Geometry, Wiley, New York, 1975.

• gK is invariant under translations of K or reflections of K in o.
• (Brunn-Minkowski) gK

1/n is concave on its support DK. 
• gK  is log concave.

      G. Bianchi, The covariogram problem,  to appear.



1( ) ,   1 .    
      

o
p qV K D K C K C K C K C K CK p q− ∞= ⊂ ⊂ ⊂ = ≤ ≤

It is known that CK is convex when n = 3 (M. Meyer, 1999; 
K regular tetrahedron → CK cube!) but not when n ≥ 4      
(U. Brehm, 1999).   Also, C1K is convex due to the strange 
fact that

If K is a convex body in      and 0 ≠ p  ≥ -1, define
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p-Cross-Section Bodies

( )
1/

1 11 ( )  ,      ,
( )

      

p

p
p n

C K u
u X K tu dt u S

V K
ρ ⊥

+ − 
= ∈ 

 
∫


etc.  Then

n


1 1( )!    
      

nC K I R K−=
      R.J.G. and A. Giannopoulos, p-Cross-section bodies,  Indiana Univ. Math. J. 48 

(1999), 593-613.



Ball, 1988: Let f  be a nonnegative, integrable, log 
concave function on      and let p > 0.  Then 
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More on Convexity
n



So RpK and SpK are convex when p ≥ 0.

( ) ( )( )1/
1

0
  ,      

   

,

   

p
p nx f tx t dt o xρ

∞ −= ≠ ∈∫ 

      K. M. Ball, Logarithmically concave functions and sections of convex sets in Rn,  
Studia Math. 88 (1988), 64-94.

is the radial function of a convex body in    . n


Are RpK and SpK convex when -1 < p < 0? 
Is CpK convex when n = 3 or when K is o-symmetric?
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The Covariogram Problem
Matheron, 1986: Is a convex body determined, up to translation 
and reflection in the origin, by its covariogram?

Yes, when n = 2:
      G. Averkov and G. Bianchi, Confirmation of Matheron’s conjecture on the covariogram 

of planar convex body, J. Euro. Math. Soc. (JEMS) 11 (2009), 1187-1202.
No, when n ≥ 4:

     G. Bianchi, Matheron’s conjecture for the covariogram problem, 
     J. London Math. Soc. (2) 71 (2005), 203-220.

Open, when n = 3!
We have gK=gL if and only if for each u in Sn-1, the X-rays 
XuK and XuL are rearrangements of one another.

R.J.G. & G. Zhang, 1998: Equivalently, is a convex body K so 
determined by (i) RpK, for all p > -1 or (ii) SpK, for all p ≥ -1?

R.J.G., P. Gronchi, and C. Zong, Sums, projections, and sections of lattice sets, and 
the discrete covariogram, Discrete Comput. Geom. 34 (2005), 391-409.
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( 1, ) :   ( ) ) ( )( n on

n
n V K K V K

n
V

−
 
 


− Π


≤

12
( , ) :   ( ) )(

n
n V K DK

n
V

−


∞


≥ 
 

with equality anywhere if and only if K is a simplex.

D. Langharst, Generalizations of Berwald’s inequality to measures,  arXiv:2210.04438v3.

, ,

1/
,

( ) ,   -1 ,

( ( 1, )) ,     ( ) ( ),
   
      

o
n q q n p p

p
n p n

DK c R K c R K nV K K p q

c nB p n V R K V K

⊂ ⊂ ⊂ Π < <

= + =
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Inequalities 1

G. D. Chakerian, Inequalities for the difference body of a convex body, Proc. Amer. 
Math. Soc. 18 (1967), 879-884.

•  Apply Berwald’s inequality (Berwald, 1947; Borell, 
1973) to the concave function ρK(∙, u) on K.

• Analogous inclusions hold for the p-cross-section bodies 
CpK, though without global equality conditions.

Rogers-Shephard inequality

Zhang 
projection 
inequality

Ai-Jun Li, Cortona meeting talk,  June 2023.  (k-dim. X-rays, 1 < k < n-1.)



J. Haddad and M. Ludwig, Affine fractional Sobolev and isoperimetric inequalities,  
arXiv:2207.06375v1.

( ) / ( ) ( ) / ( ),   -1 0,  ,

( ) / ( ) ( ) / ( ),   0 .

n n
q p

n n
q p

V R K V K V R B V B p p n

V R K V K V R B V B p n

≥ < < >

≤ < <
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Inequalities 2

J. Haddad, D. Langharst, E. Putterman, M. Roysdon, and D. Ye,  Affine isoperimetric 
inequalities for higher-order projection and centroid bodies,  preprint.

J. Haddad and M. Ludwig, Affine Hardy-Littlewood-Sobolev inequalities,  
arXiv:2212.12194v1.

D. Langharst, M. Roysdon, and A. Zvavitch, General measure extensions of projection 
bodies,  J. London Math. Soc. (3)  125 (2022),  1083-1129.

  ,    0
)

( , )
( n n

p

p

n

L

p x y dx dy p
nV

L
K

V R K
−

= − ≠∫ ∫
 



chord-power integral
+ dual Minkowski inequality + Riesz rearrangement inequality
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Example 1

DK = [-1,1]2 K = [0,1]2

( )  
=2   
      

o

o

nV K K
K
Π

Π

, ,  0.9 0.5  n p pc R K p− ≤ ≤ ,  0.9 0.5  pR K p− ≤ ≤

      T. Koshida, Convexities of radial mean bodies,  Masters thesis, Ibaraki University, 
Japan, 2023.

RpK is convex when p ≥ -1 when K = [0,1]^2 or K = [0,1]^3.



26

Example 2

K = [-1,1]3

,  0.9,  0.5, 0.5,  1, 10pR K p = − − −

Thanks to
Hiroshi Iriyeh
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