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Introduction

Fixed points of geometric operators appear in a number of
problems in convex geometry.

The projection body ΠK of a convex body K is defined in terms of
its support function by

hΠK (u) = Vn−1(K |u⊥), u ∈ Sn−1.



The conjectured inequality of Petty

Conjecture The volume ratio

Vn(ΠK )/Vn(K )n−1,

where K ∈ Kn, is minimized precisely on ellipsoids.



The class-reduction technique

Schneider pointed out that any minimizer K of Vn(ΠK )/Vn(K )n−1

satisfies the fixed point equation Π2K = αK where α is a positive
number.

In particular, this observation implies that minimizers should be
zonoids. This is called the class-reduction technique.



Fixed Points of Π2

Weil (1971) classified all possible polytopal solutions of Π2.

For smooth bodies the question remains open. It is conjectured
that these are precisely ellipsoids.

Theorem [Saroglou-Zvavitch 2017, Ivaki 2018] There is a C 2

neighbourhood of the unit ball where the only fixed points of Π2

are ellipsoids.



Fixed Points of Π2
i

The i-th projection body ΠiK of a convex body K is defined by

hΠiK (u) = Vi (K |u⊥), u ∈ Sn−1.

Theorem [Ivaki 2018] Let 1 < i < n − 1. Then, there is a C 2

neighbourhood of the unit ball where the only fixed points of Π2
i

are balls.

We want to extend these results to a larger class of geometric
operators.



Minkowski Valuations

A Minkowski valuation is a map Φ : Kn → Kn such that

ΦK +ΦL = Φ(K ∩ L) + Φ(K ∪ L),

whenever K ∪ L ∈ Kn.

We define the space MVali to be the space of all continuous
Minkowski valuations which are:

1. translation invariant,

2. positively homogeneous of degree i : Φ(λK ) = λiΦ(K ), for all
λ > 0,K ∈ Kn,

3. SO(n) equivariant: Φ(ϑK ) = ϑΦK for all ϑ ∈ SO(n).
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Hadwiger-type Theorem for Minkowski Valuations

.

Theorem [Schuster-Wannerer 2017; Dorrek 2017] For every
Φi ∈ MVali , there exists a unique centered, SO(n − 1) invariant
function f ∈ L1(Sn−1) such that

h(ΦiK , ·) = Si (K , ·) ∗ f , K ∈ Kn.

The convolution transform Tf is given by

Tf µ = (µ ∗ f )(u) =
∫
Sn−1

f̄ (⟨u, v⟩)µ(dv)

where µ is a measure on Sn−1.
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on [−1, 1] is given by

f̄ (t) = f (te +
√
1− t2v).
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Exmaple:

1. f (u) = 1
2h[−e,e](u) =

1
2 |⟨e, u⟩| for u ∈ Sn−1:

h(ΠiK , u) =
1

2

∫
Sn−1

|⟨v , u⟩|Si (K , dv), u ∈ Sn−1.

2. Let L ∈ Kn be a convex body of revolution, then

h(ΦiK , u) =

∫
Sn−1

hL(v)(u)Si (K , dv), u ∈ Sn−1.

Here L(u) denotes the rotated copy of L with axis of
revolution the line span by u.

We say that Φi is C
2
+-regular if L is of class C 2

+.
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- Theorem [Ludwig 2005] The projection body map Π is the
unique Minkowski valuation that is SL(n)-contravariant.

- Theorem [Schuster 2007] If Φn−1 ∈ MValn−1 is even, then
its generating function is the support function of a symmetric
convex body of revolution.

- The classification of all generating functions is still open even
in the top degree case.
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Mean section operators

Definition [Goodey-Weil 1992] For 0 ≤ j ≤ n, the j-th mean
section body MjK of a convex body K is defined by

h(MjK , u) =

∫
AG(n,j)

h(K ∩ E , u)dE , u ∈ Sn−1,

where AG(n, j) denotes the affine Grassmannian.

▶ Mj is not translation invariant: M̃jK = Mj(K − S(K )).

▶ It is not hard to check that M̃j ∈ MVali where i + j = n + 1.

▶ Finding their generating function is highly non-trivial: This
was done by Goodey and Weil [JDG 2014].
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□n =
1

n − 1
∆Sn−1 + Id.

It relates the support function of a convex body K to its area
measure of degree 1:

□nhK = S1(K , ·).

Berg’s functions: gn ∈ C∞(−1, 1) such that

□nğn = δē − cn⟨e, ·⟩.

In other words, ğn is essentially the Green’s function of □n.



Generating functions of Mj

Theorem [Goodey-Weil 2014] For 2 ≤ j ≤ n, Berg’s function ğj
(as a function on Sn−1) is the generating function of M̃j .

Remarks

1. The gj ’s are neither even nor support functions.

2. All generating functions of Minkowski valuations in MVali we
know are of the form:

f = hL + gi ∗ µ

where µ is the generating function of a Minkowski endomorphism.



Berg’s functions
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Fixed Points of Minkowski Valuations

Theorem [Schuster-OM 2021] Let Φi ∈ MVali be C 2
+ regular

and even. Then, there is a C 2 neighbourhood of the unit ball
where the only fixed points of Φ2

i are balls.

Remarks

1. As oppose to Π2, the only fixed points are balls.

2. There is a gap between Ivaki’s results and the theorem above.
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Fixed Points of Minkowski Valuations

We unified the previous results by Ivaki, and and Schuster-OM.

Theorem [Brauner-OM 2023] Let 1 < i ≤ n − 1 and
Φi ∈ MVali generated by any convex body of revolution. Then,
there exists a C 2 neighborhood of the unit ball where the only
fixed points of Φ2

i are Euclidean balls,

unless Φ = Π, in which case
ellipsoids are the only solution.



Fixed Points of Minkowski Valuations

We unified the previous results by Ivaki, and and Schuster-OM.

Theorem [Brauner-OM 2023] Let 1 < i ≤ n − 1 and
Φi ∈ MVali generated by any convex body of revolution. Then,
there exists a C 2 neighborhood of the unit ball where the only
fixed points of Φ2

i are Euclidean balls, unless Φ = Π, in which case
ellipsoids are the only solution.



Fixed Points of Minkowski Valuations

Theorem [Brauner-OM 2023] Let Φn−1 ∈ MValn−1. Then,
there exists a C 2 neighborhood of the unit ball where the only
fixed points of Φ2

n−1 are Euclidean balls,

unless Φ = Π, in which
case ellipsoids are the only solution.

Theorem [Brauner-OM 2023] Let 1 < j ≤ n − 1. There exists a
C 2 neighborhood of the unit ball where the only fixed points of M2

j

are Euclidean balls.



Fixed Points of Minkowski Valuations

Theorem [Brauner-OM 2023] Let Φn−1 ∈ MValn−1. Then,
there exists a C 2 neighborhood of the unit ball where the only
fixed points of Φ2

n−1 are Euclidean balls, unless Φ = Π, in which
case ellipsoids are the only solution.

Theorem [Brauner-OM 2023] Let 1 < j ≤ n − 1. There exists a
C 2 neighborhood of the unit ball where the only fixed points of M2

j

are Euclidean balls.



Fixed Points of Minkowski Valuations

Theorem [Brauner-OM 2023] Let Φn−1 ∈ MValn−1. Then,
there exists a C 2 neighborhood of the unit ball where the only
fixed points of Φ2

n−1 are Euclidean balls, unless Φ = Π, in which
case ellipsoids are the only solution.

Theorem [Brauner-OM 2023] Let 1 < j ≤ n − 1. There exists a
C 2 neighborhood of the unit ball where the only fixed points of M2

j

are Euclidean balls.



Regularity of convolution operators

We need to understand which convolution operators Tf are
bounded linear operators from C 0 to C 2.

For the cosine transform we have the following:

Theorem [Martinez-Maure 2001] The cosine transform given by

Cg(u) =
1

2

∫
Sn−1

|⟨u, v⟩|g(v)dv

is a bounded linear operator from C 0 to C 2. Moreover,

D2Cf (u) =
1

2

∫
Sn−1∩u⊥

v ⊗ v f (v)dv .



Regularity of convolution operators

Theorem [Brauner-OM 2023+] The following statements are
equivalent:

1. Tf : C 0 → C 2 is a bounded linear operator.

2. D2f is a matrix-valued signed measure.

3. □nf is a signed measure and∫ π
2

0

1

r
|(□nf )({u ∈ Sn−1 : |⟨ē, u⟩| > cos r})|dr < ∞.
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Regularity of generating functions

Theorem [Brauner-OM 2023+] Let 1 ≤ i ≤ n − 1 and
Φi ∈ MVali with generating function f . Then, □nf is a signed
measurea and f is locally Lipschitz outside the poles.

Moreover, if Φi is weakly monotone or i = n − 1, then there
exists a constant C > 0 such that

|□nf |(
{
u ∈ Sn−1 : |⟨e, u⟩| > cos r

}
) ≤ Cr i−1, r > 0.



Sketch of the proof

Let Dn−1 denote the n − 1 dimensional disk in Rn.

The surface area measure of the
disk is given by

Sn−1(D
n−1, ·) = κn−1(δ−e + δe)

for 1 < i < n − 1, Dn−1 has absolutely continuous i-th area
measure:

Si (D
n−1, dv) =

n − 1− i

n − 1
(1− |⟨e, v⟩|2)−

i
2 dv



Note that

S1(ΦiD
n−1, ·) = □nh(ΦiD

n−1, ·) = Si (D
n−1, ·) ∗□nf .

Thus, by a simple approximation argument, one can show

S1(ΦiD
n−1,C2r (e)) ≥ Si (D

n−1,Cr (e))(□nf )(Cr (e))

where

Cr (e) = {u ∈ Sn−1 : |⟨e, u⟩| > cos r} , r > 0

On the other hand,

Si (D
n−1,Cr (e)) = ωn−1

n − 1− i

2

∫ 1

cos r
(1− t2)

n−3−i
2 dt

≥ κn−1(sin r)
n−1−i ≈ κn−1r

n−1−i
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So far we have shown,

crn−1−i□nf (Cr (e)) ≤ S1(ΦiD
n−1,C2r (e))

We need an estimate of S1(ΦiD
n−1,C2r (e)) from above. However,

ΦiD
n−1 could be any convex body in Rn.

Theorem [Firey, ’70] Let K ∈ Kn be a convex body. Then, for all
u ∈ Sn−1,

S1(K ,Cr (u)) ≤ Cn(diamK )rn−2

where diamK denotes the diameter of K .

Thus, □nf (Cr (e)) ≤ c ′′r i−1.
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Thank you for your attention!
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