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Minkowski sum

Minkowski sum

For A,B ⊂ Rn and λ ∈ R;

A + B := {a + b : a ∈ A, b ∈ B},

λA := {λa : a ∈ A},

co(A) := smallest convex set containing A,

e.g. A ⊂ A + A

2
⊂ co(A).

Brunn-Minkowski inequality for A = B and t = 1/2∣∣∣∣A + A

2

∣∣∣∣ ≥ |A|,
with equality iff A is convex.
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Examples of semisums

A

P. van Hintum and M. Tiba (U. of Oxford) Stability of the BM inequality September 25th, 2023 3 / 25



Examples of semisums

A
A+A

2

P. van Hintum and M. Tiba (U. of Oxford) Stability of the BM inequality September 25th, 2023 3 / 25



Examples

A

P. van Hintum and M. Tiba (U. of Oxford) Stability of the BM inequality September 25th, 2023 4 / 25



Examples

A
A+A

2

P. van Hintum and M. Tiba (U. of Oxford) Stability of the BM inequality September 25th, 2023 4 / 25



Examples

A
A+A

2

A+A
2

+A+A
2

2 = A+A+A+A
4

P. van Hintum and M. Tiba (U. of Oxford) Stability of the BM inequality September 25th, 2023 4 / 25



Examples

A
A+A

2

A+A
2

+A+A
2

2 = A+A+A+A
4

Observations

k times︷ ︸︸ ︷
A + ...+ A

k
⊂ co(A)

P. van Hintum and M. Tiba (U. of Oxford) Stability of the BM inequality September 25th, 2023 4 / 25



Examples

A
A+A

2

A+A
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+A+A
2

2 = A+A+A+A
4

Observations

Suspicion: ∣∣∣∣∣∣∣∣∣co(A) \

k times︷ ︸︸ ︷
A + ...+ A

k

∣∣∣∣∣∣∣∣∣→ 0 as k →∞
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A+ A

Theorem (Figalli and Jerison, 2015)

For all A ⊂ Rn, we have

|co(A) \ A|
|A|

→ 0 as
|A+A

2 \ A|
|A|

→ 0.

Theorem (Figalli and Jerison, 2019)

For n = 1, 2, 3, ∃Cn, dn > 0, such that the following holds. For all A ⊂ Rn,
with |A+A

2 \ A| ≤ dn|A|, we have

|co(A) \ A| ≤ Cn

∣∣∣∣A + A

2
\ A
∣∣∣∣ .

Conjecture (Figalli and Jerison, 2019)

This holds for all n ∈ N.
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Linearity constants

Theorem (vH, Spink, T 2022)

∃Cn, dn > 0, such that the following holds. For all A ⊂ Rn, with
|A+A

2 \ A| ≤ dn|A|, we have

|co(A) \ A| ≤ Cn

∣∣∣∣A + A

2
\ A
∣∣∣∣ ,

where Cn = nO(n).

Theorem (Figalli, vH, Spink, T 2023+)

Cn = exp(O(n)) and for n ≤ 4, we find Cn optimal.
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Brunn-Minkowski inequality

Brunn-Minkowski inequality (Natural form)

For A,B ⊂ Rn measurable with |A| = |B| > 0, and t ∈ (0, 1/2], we have

|tA + (1− t)B| ≥ |A|

with equality iff A = B is convex.

Brunn-Minkowski inequality (equivalent traditional formulation)

For A,B ⊂ Rn measurable with |A|, |B| > 0,

|A + B|
1
n ≥ |A|

1
n + |B|

1
n

with equality iff A,B are homothetic convex bodies.
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Stability parameters

Parameters

δ :=
|tA + (1− t)B| − |A|

|A|
,

ω := min
x∈Rn

|co(A ∪ (x + B)) \ A|
|A|

,

γ :=
|co(A) \ A|+ |co(B) \ B|

|A|
.

α := min
x∈Rn

|A4(x + B)|
|A|

.
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Initial Qualitative Result

Theorem (Christ, 2012)

For fixed t,
ω, γ, α→ 0, as δ → 0.
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Folklore conjectures

Conjectures

For δ ≤ dn,t , we have

min
x∈Rn

|co(A ∪ (x + B)) \ A|
|A|

= ω ≤ Cn

√
δ

t

and
|co(A) \ A|+ |co(B) \ B|

|A|
= γ ≤ Cnt

−n+1δ
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Optimality of the quadratic conjecture

A = [0, 1]× [0, 1 + ε]

B = [0, 1 + ε]× [0, 1]
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Optimality of the quadratic conjecture

A = [0, 1]× [0, 1 + ε]

B = [0, 1 + ε]× [0, 1]

tA + (1− t)B

= [0, 1 + (1− t)ε]× [0, 1 + tε]
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Optimality of the quadratic conjecture

A = [0, 1]× [0, 1 + ε]

B = [0, 1 + ε]× [0, 1]

co(A ∪ B)
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Optimality of the quadratic conjecture

A

B

tA + (1− t)B

Calculation

δ ≈ |tA + (1− t)B| − t|A| − (1− t)|B|
= (1 + tε)(1 + (1− t)ε)− (1 + ε)

= (1− t)tε2 ≈ tε2

Hence,

ω =
|co(A ∪ B) \ A|

|A|
=
ε+ 1

2ε
2

1 + ε
≈ ε ≈

√
δ

t
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Folklore conjectures

Conjectures

For δ ≤ dn,t , we have

ω ≤ Cn

√
δ

t

and
γ ≤ Cnt

−n+1δ
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Bounded doubling (example)

(0,0)

(0,1) (1,1)

(1,0)

(λ, 0)

A = [0, 1]2 and B = [0, 1]2 ∪ {(λ, 0)}, then

|tA + (1− t)B| = 1 + tn, so δ = tn,

|co(B)| → ∞ as λ→∞
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Bounded doubling

Bounded doubling

Need δ < tn to say anything about ω.

Theorem (vH, Keevash 2023+)

If δ < tn, then (up to translation) |co(A ∪ B)| ≤ On,t(|A|).

Convention

Always: δ ≤ dn,t
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Previous Results for ω

Theorem (Figalli, Jerison, 2017)

∃Cn > 0, so that for all A,B ⊂ Rn, and δ ≤ dn,t , we have

ω ≤ Cn,tδ
an,t ,

where an,t =
(

t
8n log(1/t)

)3n

.

Theorem (vH, Spink, T, 2023)

For A,B ⊂ R2 and δ ≤ d2,t , we have

ω ≤ C

√
δ

t
.
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Previous Results for α

Asymetry index

α(A,B) = min
x∈Rn

|(x + A)∆B|
|A|

Previous results

(Figalli,Maggi, Pratelli, 2009) For A,B convex,
α(A,B) ≤ Cnδ

1/2t−1/2

(Figalli, Maggi, Mooney, 2018) For A a ball and B arbitrary,
α(A,B) ≤ Cnδ

1/2t−1/2

(Carlen, Maggi, 2018) For A convex and B arbitrary,

α(A,B) ≤ Cnδ
n+ 3

4 t−1/2

(Barchiesi, Julin, 2017) For A convex and B arbitrary,
α(A,B) ≤ Cnδ

1/2t−1/2
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Main Results

Theorem (Figalli, vH, T 2023+)

∃Cn > 0, so that for all A,B ⊂ Rn, and δ ≤ dn,t , we have

ω ≤ Cn

√
δ

t
,

and
γ ≤ Cnt

−Cn8
δ.
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Main Results

Theorem (Figalli, vH, T 2023+)

∃Cn > 0, so that for all A,B ⊂ Rn of equal volume and t ∈ (0, 1/2], if
|tA + (1− t)B| = (1 + δ)|A| and δ ≤ dn,t , we have (up to translation)

|co(A ∪ B) \ A| ≤ Cn

√
δ

t
|A|,

and
|co(A) \ A|+ |co(B) \ B| ≤ Cnt

−Cn8
δ.
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One Idea from the Proof: Cones!

Proposition

Consider A,B ⊂ Rd with |A| = |B|, then (up to translation) there exists a
partition C of Rd into convex cones C with apex at the origin so that:

|C ∩ A| = |C ∩ B| for all C ∈ C,

C is narrow in all but at most one direction for almost all C ∈ C, and

C is essentially the convex hull of few lines for almost all C ∈ C.

Note

t(A ∩ C ) + (1− t)(B ∩ C ) ⊂ C , so∑
C∈C
|t(A ∩ C ) + (1− t)(B ∩ C )| − |A ∩ C | ≤ |tA + (1− t)B| − |A|.

∑
C∈C
|(A ∩ C )4(B ∩ C )| = |A4B|
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Crucial Property: Alignment

Proposition

If A,B ⊂ Rd are near convex (i.e. |co(A) \ A|+ |co(B) \ B| ≤ α|A|) and
for some translate x ∈ Rd :

|(A ∩ C )4(x + (B ∩ C ))| ≤ α|A|,

then in fact
|(A ∩ C )4(B ∩ C )| ≤ Od (α) |A|,
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Cones construction

Process (3 dimensions)

Given a cone C so that |A ∩ C | = |B ∩ C | and a line ` 3 o, then there
exists a hyperplane H ⊃ `, so that

|A ∩ C ∩ H±| = |B ∩ C ∩ H±|.
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Thank you!
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