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Some recent “history”:

Everybody knows the ordinary polarity of sets K ⊆ Rn,

K ◦ := {x ∈ Rn : ⟨x , y⟩ ≤ 1 for all y ∈ K}.

Restricted to the convex bodies K with o ∈ int K , this is an
involution, K ◦◦ = K .

Artstein–Avidan, Sadovsky and Wyczesany, “A zoo of dualities”
(2023), suggested a dual polarity: (up to a reflection)

K ∗ := {x ∈ Rn : ⟨x , y⟩ ≤ −1 for all y ∈ K}.

It becomes an involution, K ∗∗ = K , when restriced to the
“cone-like” sets K , satisfying o /∈ K and λK ⊆ K for λ ≥ 1.
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The name copolar set for K ∗ was introduced by
Rashkovskii (2017).

He used copolarity to define a “copolar addition” by
K ⊕ L := (K ∗ + L∗)∗ and proved a corresponding (reverse)
Brunn–Minkowski inequality for covolumes.

The name pseudo-cone was introduced by
Y. Xu, J. Li, G. Leng (2023).

They studied copolarity in detail (though not under this name)
and characterized it.

They also proved: A nonempty closed convex set K not
containing o is a pseudo-cone if and only if K is contained in its
recession cone.
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Pseudo-cones

Definition. A pseudo-cone in Rn is a nonempty closed convex
set K satisfying

o /∈ K , λK ⊆ K for λ ≥ 1.

Definition. The recession cone of a closed convex set K is the
set

rec K := {z ∈ Rn : K + z ⊆ K}.

We recall that a pseudo-cone K satisfies

K ⊂ rec K

and that among closed convex sets not containing o this
characterizes pseudo-cones.
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We fix a closed convex cone C ⊂ Rn, pointed and with
nonempty interior, and denote by

ps(C) the set of C-pseudo-cones,

that is, of pseudo-cones K with rec K = C.

On ps(C), the Hausdorff metric dH can be defined as for
convex bodies.

There is a counterpart to the Blaschke selection theorem:

Theorem. Every sequence of C-pseudo-cones with bounded
distances from the origin contains a subsequence that
converges to some C-pseudo-cone.
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Copolarity

Definition. For an arbitrary set ∅ ≠ A ⊆ Rn we define the
copolar set by

A∗ := {x ∈ Rn : ⟨x , y⟩ ≤ −1 for all y ∈ A}

and the shadow of A by

shad A := {λx : x ∈ A, λ ≥ 1}.

Lemma. Let ∅ ≠ A ⊆ Rn. Then A∗ ̸= ∅ if and only if
o /∈ cl conv A.

Suppose that o /∈ cl conv A. Then A∗ is a pseudo-cone, and
A∗∗ = shad cl conv A.
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For a pseudo-cone K we have

recK ∗ = (rec K )◦,

where the dual cone of C is defined by

C◦ := {x ∈ Rn : ⟨x , y⟩ ≤ 0 for all x ∈ C}.

Copolarity of pseudo-cones can be described as follows.

Definition. Let K be a pseudo-cone. A crucial pair of K is a
pair (x , y) ∈ Rn ×Rn such that x ∈ ∂K and y is an outer normal
vector of K at x , normalized so that ⟨x , y⟩ = −1.

Lemma. If (x , y) is a crucial pair of the pseudo-cone K , then
(y , x) is a crucial pair of K ∗.
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So far the definitions.

And here is the program:

Minor:

(I) In how far has copolarity similar properties as the ordinary
polarity?

Major:

(II) Minkowski type problems: C-pseudo-cones with given
surface area measure.
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I. Copolarity vs ordinary polarity

(a) Linearization

Theorem. Let CCn be the set of nonempty closed convex sets
on Rn and V (CCn) be the real vector space spanned by the
characteristic functions of sets in CCn.

There is a linear mapping Φ : V (CCn) → V (CCn) such that

Φ(1K ) = 1K∗ for K ∈ CCn.

(For ordinary polarity, such a result can be found in the book of
Barvinok (2002)).
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(b) Characterization

A characterization of the ordinary polarity, due to Böröczky and
Sch (2008) has a counterpart, proved by Xu, Li, Leng (2023):

Theorem. A mapping τ from the set of pseudo-cones in Rn into
itself satisfies τ(τ(K )) = K and K ⊂ L ⇒ τ(K ) ⊃ τ(L) for all
pseudo-cones K if and ony if τ(K ) = g(K ∗) for some
self-adjoint g ∈ GL(n).

(c) Conjugate faces

For ordinary polarity, conjugate faces of polar polytopes are
well known.
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Let the pseudo-cone K be polyhedral, that is, intersection of
finitely man closed halfspaces.

For a face F of K , the conjugate face is defined by

F̂ := {x ∈ K ∗ : ⟨x , y⟩ = −1 for all y ∈ F}.

Denote by

F int
b (K ) the set of bounded faces meeting int C,

F int
u (K ) the set of unbounded faces meeting int C,

F∂
b (K ) the set of bounded faces contained in ∂C.
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Theorem. F → F̂ is an inclusion-reversing mapping of
F int

b (K ) ∪ F int
u (K ) ∪ F∂

b (K ) to F int
b (K ∗) ∪ F int

u (K ∗) ∪ F∂
b (K

∗).

It satisfies ̂̂F = F and dimF + dim F̂ = n − 1.

It maps

F int
b (K ) onto F int

b (K ∗),

F∂
b (K ) onto F int

u (K ∗),

F int
u (K ) onto F∂

b (K
∗).

Unbounded faces contained in ∂C do not have conjugate faces.
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(d) Smooth pseudo-cones

Under suitable differentiability assumptions, observations about
polarity in centro-affine differential geometry due to
Salkowski (1934), Laugwitz (1957), Oliker and Simon (1992)
can be carried over to copolarity:

Since copolarity reverses crucial pairs, the hypersurfaces ∂K
and ∂K ∗ are naturally mapped to each other. Under this
mapping, they have the following properties:

(1) The centro-affine Riemannian metrics are the same.

(2) The centro-affine cubic fundamental forms differ only by the
sign.

(3) The equi-affine support functions are reciprocal.

(4) If ∂K is an improper affine hypersphere, then also ∂K ∗ is an
improper affine hypersphere.
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II. Minkowski type problems

Let K ∈ ps(C) be a C-pseudo-cone. Let Hk denote the
k -dimensional Hausdorff measure.

One defines the surface area measure of K by

Sn−1(K , ω) := Hn−1(ν−1
K (ω))

for Borel sets ω ⊂ ΩC◦ , where

ΩC◦ := Sn−1 ∩ int C◦, ΩC := Sn−1 ∩ int C.

Thus, Sn−1(K , ·) is the image measure of Hn−1, restricted to
∂K , under the Gauss map.
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Minkowski’s problem for C-pseudo-cones:

What are the necessary and sufficient conditions on a Borel
measure φ on ΩC◦ in order that there exist a C-pseudo cone K
with

Sn−1(K , ·) = φ?

And what about uniqueness?

Note that, in contrast to the classical case of convex bodies,
ΩC◦ is an open subset of a hemisphere, and Sn−1(K , ·) may be
infinite.
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For discrete measures and polyhedral C, a (more general)
existence theorem is already found in the book of Aleksandrov
(1950).

No additional assumptions are required.

Aleksandrov writes:

“Proofs of the generalizations of the theorems of Sections 7.3
and 7.4 (still unpublished at present) can be carried out by
passing to the limit from polyhedra.”

But this is not true.

Non-discrete measures must satisfy additional assumptions.
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Roughly speaking, a surface area measure Sn−1(K , ·) cannot
grow too fast when the boundary of ΩC◦ is approached.

Definition. For compact ω ⊂ ΩC◦ , define

∆(ω) := min{∠(u, v) : u ∈ ω, v ∈ ∂ΩC◦},

the distance of ω from the boundary of ΩC◦ .

We can choose a unit vector v ∈ int C ∩ int (−C◦).
Then (Sch (2020)):

Lemma. For each C-pseudo-cone K , there exists a constant c,
depending only on C, v and K , such that

Sn−1(K , ω) ≤ c
∆(ω)n−1

for each compact set ω ⊂ ΩC◦ .
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Equivalently:

If we define

δ(u) := min{∠(u, v) : v ∈ ∂ΩC◦}, u ∈ ΩC◦ ,

then φ = Sn−1(K , ·) for a C-pseudo-cone K satisfies∫
ΩC◦

δ(u)n−1 φ(du) < ∞.

It is still an open problem whether this condition is sufficient.
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Three special solutions

The first one is already a bit older.

(1) C-close pseudo-cones and finite measures

A C-pseudo-cone K is called

C-full if C \ K is bounded,
C-close if C \ K has finite volume.

For the covolume (volume of C \ K ) of C-full sets K ,
Khovanskiı̆ and Timorin (2014) obtained versions of the
classical inequalities of convex geometry (Brunn–Minkowski,
Aleksandrov–Fenchel, Minkowski), reversed.

This was extended to C-close sets (Sch 2018). The theory can
now be found in the last chapter of
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R. Schneider, Convex Cones: Geometry and Probability. Lecture
Notes in Math. 2319, Springer, Cham, 2022.

There one finds:

Theorem. Every nonzero, finite Borel measure on ΩC◦ with
compact support (contained in ΩC◦) is the surface area
measure of a C-full pseudo-cone.

Theorem. Every nonzero, finite Borel measure on ΩC◦ is the
surface area measure of a C-close pseudo-cone.

Theorem. If K ,L are C-close pseudo-cones with the same
surface area measure, then K = L.

Extension to the Lp case by J. Yang, D. Ye, B. Zhu (2023).
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(2) C-close pseudo-cones and infinite measures

To reformulate the growth condition, define

ω(α) := {u ∈ ΩC◦ : δ(u) > α}

(a kind of inner parallel set of ΩC◦).

Theorem. Let φ be a nonzero Borel measure on ΩC◦ . If there
are constants c > 0 and κ ∈ (0,1/n) such that

φ(ω(α)) ≤ cα−κ

for α > 0, then φ is the surface area measure of a C-close set.

The question for a necessary and sufficient condition remains
open.
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Since this is our only existence result for infinite measures, we
give some ideas. The first step (from Sch (2018)) is to adapt
Aleksandrov’s approach for convex bodies to pseudo-cones
and measures with compact support.

Let ω ⊂ ΩC◦ be compact, let C(ω) be the space of continuous
functions on ω.

For positive f ∈ C(ω), the Wulff shape is defined by

[f ] := C ∩
⋂
u∈ω

{x ∈ Rn : ⟨x ,u⟩ ≤ −f (u)}.

For K ∈ ps(C), let hK be the absolute support function of K .
Then

[hK ] = K and f ≤ hK .
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Note that [f ] ∈ K(C, ω), the family of pseudo-cones K that are
C-determined by ω, which means that

K = C ∩
⋂
u∈ω

{x ∈ Rn : ⟨x ,u⟩ ≤ −hK (u)}.

Aleksandrov’s approach (adapted) is to maximize the functional

Φ(f ) := Vn(C \ [f ])−1/n
∫
ω

f dφ, f ∈ C(ω),

over {hL : L ∈ K(C, ω)}.

A maximum exists.
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Then one needs Aleksandrov’s variational lemma (adapted):

lim
t→0

Vn(C \ [hK + tf ])− Vn(C \ K )

t
=

∫
ω

f (u)Sn−1(K , du).

Result:

There is a set M ∈ K(C, ω) with

Vn(C \ M) = 1

and such that

K := λ
1

n−1 M with λ :=
1
n

∫
ω

hM dφ

satisfies
φ = Sn−1(K , ·).
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This is now applied to a sequence (ωj)j∈N of compact sets such
that

φ(ω1) > 0, ωj ⊂ intωj+1,
⋃
j∈N

ωj = ΩC◦ .

For every j ∈ N, there is a set Mj ∈ K(C, ωj) with

Vn(C \ Mj) = 1

and such that

Kj := λ
1

n−1
j Mj with λj :=

1
n

∫
ωj

hMj dφ

satisfies
φ(·) = Sn−1(Kj , ·) on ωj .
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By the selection theorem, a subsequence of (Mj)j∈N converges
to a pseudo-cone M.

Since the covolume is lower-semicontinuous, M is C-close.

Problem: Is the sequence (λj)j∈N bounded?

Equivalently: Is ∫
ΩC◦

hM dφ < ∞?

If “yes”, then also a subsequence of (Kj)j∈N converges to a
pseudo-cone K , which is C-close and satisfies

φ = Sn−1(K , ·),

by weak continuity properties.
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Lemma. There is a constant c1, depending only on C , such
that every C-close set K with Vn(C \ K ) ≤ 1 satisfies

hK (u) ≤ c1δ(u)1/n for u ∈ ΩC◦ .

Therefore, the assumption φ(ω(α)) ≤ cα−κ with κ ∈ (0,1/n)
yields

c−1
1

∫
ΩC◦

hM dφ ≤
∫
ΩC◦

δ1/n dφ

=

∫ ∞

0
φ
({

u ∈ ΩC◦ : δ1/n > α
})

dα

=

∫ ∞

0
φ(ω(αn)) dα =

∫ (π/2)1/n

0
φ(ω(αn)) dα

≤ c
∫ (·)

0
α−nκ dα < ∞.
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(3) Weighted surface area measures

The idea of Minkowski’s problem is to determine the shape of a
convex body by its surface area measure.

The shape of a pseudo-cone is, far away from the origin, more
and more determined by its recession cone.

Therefore, close to the origin, the surface area of a
pseudo-cone should be given higher weight.

For convex bodies, weighted Minkowski problems have been
treated by Livshyts (2019), Kryvonos and Langharst (2023).
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Definition Let Θ : C \ {o} → (0,∞) be continuous and
homogeneous of degree −p, where n − 1 < p < n.

The Θ-weighted surface area measure of K ∈ ps(C) is
defined by

SΘ
n−1(K , ω) :=

∫
ν−1

K (ω)
Θ(x)Hn−1(dx)

for Borel sets ω ⊂ ΩC◦ .

The Θ-weighted covolume of K ∈ ps(C) is defined by

VΘ(K ) :=

∫
C\K

Θ(x)Hn(dx).

Lemma. Under the assumption n − 1 < p < n, the weighted
surface area measure and the weigthed covolume of
C-pseudo-cones are finite.
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Theorem. For every nonzero, finite Borel measure on ΩC◦

there exists a C-pseudo-cone K with

SΘ
n−1(K , ·) = φ.

Uniqueness?

Only a preliminary result:

Theorem. If Θ(x) = ∥x∥p and φ has compact support
(contained in ΩC◦), then a C-pseudo-cone with Θ-weighted
surface area measure φ is uniquely determined.

A technical intermezzo:
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For K ∈ ps(C), let ϱK be its radial function.

For almost all v ∈ ΩC we can define

αK (v) := νK (ϱK (v)v)) (radial Gauss map).

For a bounded, continuous function g : ΩC◦ → R,∫
ΩC◦

g(u)SΘ
n−1(K , du) =

∫
ΩC

g(αK (v))Θ(ϱK (v)v)
ϱn−1

K (v)
|⟨v , αK (v)⟩|

dv .

This can be used, together with the dominated convergence
theorem, to show the weak continuity of the Θ-weighted surface
area measure on K(C, ω), for compact ω ⊂ ΩC◦ .
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Proof of the existence theorem: first for compact ω ⊂ ΩC◦ , then
using an increasing sequence ωj ↑ ΩC◦ .

For compact ω, one maximizes

Φ(f ) := VΘ([f ])
− 1

n−p

∫
ω

f dφ, f ∈ C(ω).

But the required variational lemma is now more difficult, since
Aleksandrov’s approach (mixed volumes, Minkowski’s
inequalities) cannot be used.

Fortunately, Huang, Lutwak, Yang, Zhang (2016) have found a
different approach. It was extended to the weighted situation by
Kryvonos and Langharst (2023). This can be carried over to
pseudo-cones:
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Lemma. Let K ∈ K(C, ω), for some compact ω, and let
f ∈ C(ω). Then

lim
t→0

VΘ([hK + tf ])− VΘ(K )

t
=

∫
ω

f SΘ
n−1(K , du).

For one of the lemmas of Huang, Lutwak, Yang, Zhang (2016),
needed to prove the above, we give (adapted to pseudo-cones)
a more direct proof, avoiding convexifications (the polars of
Wulff shapes).
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Thank you for your attention!
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