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The classical Minkowski Problem

» In this talk, K is always a convex body (with non-empty interiors) in R",
and h = hx means its support function.

> Suppose h € C%(S™1). Then,
x=Vh(v)+h-v
can be viewed as the reverse Gauss map, and
V?h + hl
can be viewed as the reverse Weingarten map from v+ to 7,0k, and hence,
det (VZh + RI) (v)

is the reciprocal Gauss curvature at .



The classical Minkowski Problem

In this talk, K is always a convex body (with non-empty interiors) in R",
and h = hx means its support function.

Suppose h € C3(S™1). Then,
x=Vh(v)+h-v
can be viewed as the reverse Gauss map, and
V?h + hl
can be viewed as the reverse Weingarten map from v+ to 7,0k, and hence,
det (VZh + RI) (v)

is the reciprocal Gauss curvature at .

The Minkowski problem (smooth version) asks to construct a convex body
K whose Gauss curvature is the prescribing spherical function f, that is

G(z) = f(vk(x)), =€ IK.

What are the both sufficient and necessary conditions on f7



The classical Minkowski Problem
» Monge-Ampére equation on S™~ . Given positive f € C(S™1), find con-
vex solution A : S™ ! - R to
det (V*h +hI) = f.
Minkowski, Aleksandrov, Fenchel-Jessen, Cheng-Yau, Nirenberg, Pogorelov, Caffarelli...

» However, the classical solution of the above PDE is only suitable for char-
acterizing regular convex bodies (smooth and strictly convex).



The classical Minkowski Problem (Prescribing measure problem)

» Reverse Gauss image: For a Borel w C ™!

Vi (w) :=={r € 9K : Jv € w, such that v is an outer normal of 0K at x}.

» Surface area measure:
S(K,w) :=H" ! (vi(w)), Borelwc S" 1

» The Minkowski problem (general version). Given a Borel measure . on the
sphere S™~ !, is it possible to construct a convex body K such that

S(K,-) = pu?



The classical Minkowski Problem (Prescribing measure problem)

» Reverse Gauss image: For a Borel w C ™!

Vi (w) :=={r € 9K : Jv € w, such that v is an outer normal of 0K at x}.
» Surface area measure:
S(K,w) :=H" ! (vi(w)), Borelwc S" 1

» The Minkowski problem (general version). Given a Borel measure . on the
sphere S™~ !, is it possible to construct a convex body K such that

S(K,-)=u?

> Discrete Minkowski problems. Minkowski (1897).



Christoffel-Minkowski problems (and area measures)

» Christoffel-Minkowski problem (prescribing curvature problem)
o (V2h + hI) = f.
See Guan-Ma (2003).
» Note that, the engenvalues of V2h + h1 are principal radii of OK.

» Christoffel-Minkowski problem (prescribing area measure problem)
Sk<K7 ) = K,

where Si (K, -) means Aleksandrov's k-area measures.



Aleksandrov’s variation formula (1938)

» Let K be a convex body and g € C(S™"!). Define K; to be the Aleksandrov body
(Wulff shape) as

Ki={x €R":2-v < hg(v) +tg(v),Yv € S" 1}, te(-4,0).

Then
d
dt lt=0
» One doesn't require any regularity assumptions on /. This means that we don't know
the exact number of hg, even if ¢ is sufficiently small.

Vi) = [ alo)ds(K.0).



Aleksandrov’s variation formula (1938)

» Let K be a convex body and g € C(S™"!). Define K; to be the Aleksandrov body
(Wulff shape) as

Ki={x €R":2-v < hg(v) +tg(v),Yv € S" 1}, te(-4,0).

Then
d
dt lt=0
» One doesn't require any regularity assumptions on /. This means that we don't know
the exact number of hg, even if ¢ is sufficiently small.

V(K;) = /Sn1 g(v)dS(K,v).

» The Minkowski problem is reduced to finding a critical point of the functional

1 1
O(K) =log <|M| /Sn1 thu> — ﬁlogV(K).
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Summary 1

One can define surface area measure for each convex body. (Complex coun-
terpart? Variational proof of the Calabi conjecture, Berman-Boucksom-Gued (2013).)

One has the variation formula of the volume with respect to perturbations
in the class of convex bodies (without regularity assumption).

These allow one to solve the Minkowski problem in a direct way (doing
calculus...)

What can we do along with this line?

Not everything can be differentiated in this way.



Variation formulas for the area measures?

» One-side derivative of the ‘surface area’ gives the (n — 2)-area measure
i( S(K +tL) = / i (0)dSh (K, v)
dt lt=0+ N gn—1 L ne2 T

» One-side derivative of the ‘quermassintegral’ gives the k-area measure

d

— Wh_k—1(K +tL) = h dSk(K,v).

dt‘t:OJr k—1(K +tL) /Sn1 L(v)dSk(K,v)

> However, it is easy to construct a convex body K and continuous function g (even if
g = 1), such that

d
=| sy £ | S,

t—0+t



Dual Minkowski Problem

The dual quermassintegral (Lutwak 1970s-80s).
Variation formula (Huang-Lutwak-Yang-Zhang (2016)).

d —~ ~
Gl T =a [ g0)aC, ()

where CN'q(K, -) means the dual curvature measure, and K is the log-Wulff shape.

Minkowski problems for (1, is called the dual Minkowski problem.

C(K,-) coincides with the cone-volume measure Vi, and CN'O(K*,~) coincides with
Aleksandrov's integral curvature.

This is a essentially different variation formula after Aleksandrov.



Recent development regarding the Minkowski type problems and the
variational formulas

Andrews, Bianchi, Boroczky, Brendle, Bryan, Chen, Choi, Chow, Cianchi,
Cordero-Erausquin, Colesanti, Daskalopoulos, Dou, Feng, Fimiani, Fodor,
Fragald, Gardner, Gluck, Gong, Goodey, Grinberg, Guan, Guang, Haberl, He,
Heged(is, Henk, Hineman, Hong, Hu, Huang, Hug, Ivaki, Jerison, Jian, Jiang,
Klain, Klartag, Kolesnikov, Kryvonos, Langharst, Leng, Lewis, Li, Lin, Linke,
Liu, Livshyts, Long, Lu, Lutwak, Ma, Marsiglietti, Milman, Miu, Ni, Nystrom,
Oliker, Pollehn, Rotem, Saari, Salani,Saroglou, Scheuer, Schuster, Sheng,
Schneider, Semenov, Stancu, Sun, Trinh, Trudinger, Ulivelli, Umanskiy, Vogel,
Wang, Weil, Wu, Xia, Xie, Xing, Xiong, Xu, Xiao, Yang, Yaskin, Yaskina,Ye,
Zhang, Zhao, Zhou, Zhu, ...



A motivation of our work

» The dual curvature measures are not translation invariant in general.

» For example, an elementary sequence of the L, dual curvature measure
(Lutwak-Yang-Zhang 2018) is defined by

Chq(K,w) = / 2|9 dH ().
Vi)

» One can construct a family of translation invariant geometric measures as
follows,

F,(K,w) :/ 517q(K — z,w)dz.
K

» Question: What is the ‘primitive’ of F,(K,-)?



Integral Geometry

In mid-1930s, Blaschke established a school of Integral Geometry in Hamburg. See the
books of Santalé and Ren.

Kinematic formula. For convex bodies K and L,
1 < /n
[ gt = 5 3 ()W),
geG(n) Wn 5 \1?
where G(n) is the group of rigid motions in R™, and p is the Haar measure.

Extensions of the Kinematic formula.  Chern (1942, 1952), (knwon as Chern-Yien
formula). See also the books of Blaschke, Santalé, Ren, Schneider.

Dual Kinematic formula (of dual volumes and ‘chord integrals’). Zhang (1999).



Chord (power) integrals in Integral Geometry

» Chord integral (Blaschke, Santald, Ren, Zhang). For a convex body K,
I,(K) = / |[K nej9de,  real ¢ >0,
A(n,1)

where |K N ¢| denotes the length of the chord K N ¢, and d¢ denotes the
normalized Haar measure on the affine Grassmannian A(n,1).
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Geometric properties of chord integrals

Property 1.
Wyy—
L(K) = V(K), I(K)=""25(K).
Property 2.
[ ol ngP s = 2 na), [ ol ng) ds = 1K),
A(n,i) v+ A(n,i)

where d¢; denotes the normalized Haar measure on the affine Grassmannian A(n,1).

Property 3 (Zhang (1999)).

I,(K) = q/Kf/ql(K, 2) dz.

Wn,

Property 4.

Iq(K):/ / Xk (z,u)dzdu.
Sn—1 JyuL



Analytic properties of chord integrals

0= [ [ Bt
» Property 6. For g < 1,

q—l [Lxe(x) — 1k (y)|
) // o —ypre W

Denote s = 1 —q. Py = I;_, is the fractional perimeter.  Almgren-Lieb
(1989); Bourgain-Brezis-Mironescu (2001); Ludwig (2014); Haddad-Ludwig (2023).

» Property 5. For g > 1,




Summary 2

» The ‘chord integral’ I,(-) connects the ‘'volume’ V'(-) and the ‘surface area’

» Can we do calculus on the operator I,(-)?

» Recall that S(-) is not differentiable.



Variation formula and chord measure

» Variation formula for chord integrals. (Lutwak-X.-Yang-Zhang)
Let g € C(S™ 1) and K; be the Wulff shape generated by hy + tg, that is

Ki={z €R": 2 v < hg(v)+tg(v),Yv € S" 1}
Then, for ¢ > 0, we have
d
il = [ o) dF (K v)
» The chord measure (Lutwak-X.-Yang-Zhang) is defined by

Fy(K,w) =— Vo1 (K, z) dH 7 (2),

vic(n)

—/ Cho(K — z,w)dz.
K



Chord measure

» In the definition

2 _
Fy(K,w) = _q/ ()vq,l(K, 2 A (2),
vi(n

Wn

for z € 0K, ‘7;1_1([(, z) can be defined by

_ 1
Vi1 (K, 2) = 2 Jons Xk (z,u)"  du.

» When ¢ € (0,1), ‘N/q_l(K, -) is unbounded in K, and may also be unbound-
ed on OK. (Singularity!)



Properties of the chord measures

» F7 is a translation invariant family of geometric measures.

FQ(Kﬂ ) = FQ(K + Zo, )
» The chord measure F,(K,-) is of centroid 0, that is

/ vdFy,(K,v)=0.
Sn—1



Convergence property of the chord measure

» Convergence. Suppose 0K is C?. As ¢ — 0, we have, up to a constant,

qVq_l(K, z) = 21 Xu(K, z)q_ldu — K1+ K1

n Jon-1
» As a result, in smooth case,
Fy(K,:) = Sp—o(K,) as ¢q—0.
This makes it reasonable to define
Fo(K,-) = Sh-a(K, ).
» In summary, not only /,(-) — S(-), but also their derivatives.

(A little bit suprising because f;, — f does not imply f; — f'.)



The Chord Minkowski problem

» Chord Minkowski problems: Given ¢ > 0 and a Borel measure i on the
sphere S™~ !, try to construct the convex body K such that

Fy(K, ) = ().
» We completely solved the chord Minkowski problem for all ¢ > 0.

» Solution (Lutwat-X.-Yang-Zhang). Let ¢ > 0. Then, both the necessary
and sufficient conditions of a measure i to be a chord measure are:

» 1 is not concentrated on a closed hemisphere of S™~1;

» u is of centroid 0, that is
/ vdp(v) = 0.
Sn—1



About the proof of the variation formula

> It is actually a problem of interchanging the limit and integral.
» Recall that
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About the proof of the variation formula

It is actually a problem of interchanging the limit and integral.

Recall that
Property 3 (Zhang (1999)).

I,(K) = /Kf/ql(K,z)dz.

Property 4.

Iq(K)z/ / Xk (z,u)dzdu.
Sn—1 ul



About the proof of the variation formula
> It is actually a problem of interchanging the limit and integral.
» The formulation (Property 3)

1K) = 2L [ Vit s

Wn,

is suitable (and respectively easy to deal with) for the case ¢ > 1.
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» The difficulty lies in the case g € (0, 1).



About the proof of the variation formula

> It is actually a problem of interchanging the limit and integral.
» The formulation (Property 3)

1K) = 2L [ Vit s

is suitable (and respectively easy to deal with) for the case ¢ > 1.
» The difficulty lies in the case g € (0, 1).
» Singularity of ‘N/q_l(K, -) on the boundary;
» We were not able to find a dominate function: By Property 4,

IQ(Kt>_ICI(K) :/ XKt(Z,U)q—XK(Z,U)qudU
t gn-1 JyuL t ’




Divergence type formula for chord integrals

» Calculate the derivative

d
— I, (K +tK).
dt‘t:O Q( +tK)

» Since I, is (n + ¢ — 1)-homogeneous, we have

d
— = - DI, (K).
S| LK+ tK) = (n 4 q = DI, (K)

» On the other hand, if there exists such a desired measure F,(K,-), we should have

(n+q—DI(K) =2

I, (K +tK) = hgdF (K,-).
Gl far 0 = [ hiedpy ()

Sn—1



Divergence type formula for chord integrals
Calculate the derivative J
— I, (K +tK).
dt‘t:O oK+ 1K)

Since I, is (n + ¢ — 1)-homogeneous, we have

d
— I,(K+tK)= - DI, (K).
S| LK+ tK) = (n 4 q = DI, (K)

On the other hand, if there exists such a desired measure Fy (K, -), we should have

(n+q—DI(K) =2

I, (K +tK) = hgdF (K,-).
Gl far 0 = [ hiedpy ()

Sn—1

Divergence type formula (Lutwak-X.-Yang-Zhang)

_L % 2)(z vk (z n=l(,
1K) = ot | Vi) ) @ o)

However, it is still not a direct computation to obtain the divergence type formula,
because of the singularity in V,_ (K, -).



About the proof of the variation formula

» The idea is to use the divergence type formula to construct a sequence of dominated
functions ¢¢(z,u).

» The construction guarantees

Xk, (z,u)? — Xk (z,u)?
t

S ¢t(2au)a

» and the divergence type formula was used to give

/ / hm oi(z,u)dzdu = hm/ / o¢(z, u)dzdu.
Sn—1 t—0 Sn—1



Summary 3

» The differentials of chord integrals I,(-) give the chord measures F(-, ),

» and the chord measures F, (K, -) connects the surface area measure S(K, -)
and the (n — 2)-area measure S, _o( K, ).

» We can completely solve the chord Minkowski problem of F(-) for arbitrary
q > 0, which can be arbitrarily close to the critical case.
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Summary 3

The differentials of chord integrals I,(-) give the chord measures F,(-,-),

and the chord measures Fj, (K, -) connects the surface area measure S(X, -)
and the (n — 2)-area measure S, _o( K, ).

We can completely solve the chord Minkowski problem of F(-) for arbitrary
q > 0, which can be arbitrarily close to the critical case.

This still gives a strategy to study the Christoffel-Minkowski problem.



A family of Monge-Ampeére operators converging to o,, -
» Proposed here, for ¢ > 0, is the following (Lutwak-X.-Yang-Zhang )

qVy—1([h),Vh) det (V2h +hI) = f, on S"7L.

> Here,
W ={zeR":z-v<h(v), YweS"'}

is the convex body whose support function is A, and
Vh =Vh(v)+h-v

is the boundary point whose outer normal is v. For the convex body [h] and z =
Vh(v) € O[h], the integral operator V,_1([h], Vh) is defined as before.

> If his C? and det (V?h + hl) > 0, then, up to a constant

qVy—1([h], V) det (V?h + hI) — o, o(V?h + hI)



» We are able to find both the necessary and sufficient conditions of the
existence of its weak solution.

» Question 1: Fix ¢ > 0. Under what condition of f, the solution h belongs
to C%9?

» Question 2: Under what condition of f, the solution h, has a uniform 2o
estimate independent of ¢?



» We are able to find both the necessary and sufficient conditions of the
existence of its weak solution.

» Question 1: Fix ¢ > 0. Under what condition of f, the solution h belongs
to C%7?

» Question 2: Under what condition of f, the solution h, has a uniform 2o
estimate independent of ¢?

» If Question 2 is answered, then by the compactness, we may derive

f = Qj%j—l(h,vhqj) det (VQth —+ hqu) — O-n—Q((th() + h()]),



» We are able to find both the necessary and sufficient conditions of the
existence of its weak solution.

» Question 1: Fix ¢ > 0. Under what condition of f, the solution h belongs
to C%7?

» Question 2: Under what condition of f, the solution h, has a uniform 2o
estimate independent of ¢?

» If Question 2 is answered, then by the compactness, we may derive

f = Qj%j—l(h,vhqj) det (VQth —+ hqu) — O-n—Q((th() + h()]),

» a solution to the (n — 2)-Christoffel-Minkowski problem.



General operators converging to o,

» The section-power integral W, ,(K') of convex body K is defined by

Wi, q(K) ::/ vol,, (K N &)4deg,

A(n,m)
where d¢ denotes the Haar measure on affine Grassmann space A(n,m). By Cauthy-

Kubota formula, W,, ((K) — W,,(K) as ¢ — 0.
» Define the section-power measure by

Fog(K,n):=q / / vol,, (K. N E) 'dEdH" " (2), Borel n c S" 1.
Jvit(n) JG(nym)

» If 0K is C? and has positive curvatures, then, up to a constant,
Fr (K, ) — Spo1-m(K, )

weakly as ¢ — 0. (Note that f; — f does not imply f; — f). In fact,

q/ vol, (K, N E)qfldE — C(2).
JG(n,m)



The case m = 2 (scalar curvature case)

> Take m = 2 for example. We can compute that
q/ vol,, (K. N E)"Y'dE — ———
G(n,m) 1
» Denote e, to be the normal of 0K at z. Using a integral geometry formula

q/ volo (K, N E)T'dE
(n,2)
q(n —2) )
25n 2 gn 3] o (K. N E)T |w - en|dwd
2|Sn 2||Sn- 3/eLmSn 1/¢05n 1V02( V9w - ey |dwdu .

By an estimate of voly (K, N E) and the other integral geometry formula,

¢ / voly(K. N E)I~1dE — C(Es)dE»,
G(n,2) G(ex,2)

where C/(E3) denote the sectional curvature and E, is a 2-dim subspace of e:.



Thank youl



