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Introduction

Connection between various fields:
@ Stationary point processes,
Unimodular random graphs,
Unimodular discrete spaces,

°
°
@ Stationary random measures,
@ Scaling limits,

°

Borel equivalence relations.
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Introduction

Connection between various fields:
@ Stationary point processes,
@ Unimodular random graphs,
@ Unimodular discrete spaces,
@ Stationary random measures,
°

Scaling limits,

Borel equivalence relations.
Key property: The mass transport principle (MTP).
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1. Point Processes

e ®: A stationary point process on RY.

e i.e., a random discrete subset of RY,
o sth.,VteRI: b+t ~ b,
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1. Point Processes

e ®: A stationary point process on RY.

e i.e., a random discrete subset of RY,
o sth.,VteRI: b+t ~ b,

@ The Palm version of ¢:

o & := ® conditioned on containing 0,
e or ® seen from a typical point of ®.
e Formally:

E [h(do)] = %E D1 h(®—x)
xedn[0,1]9
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1. Point Processes

e ®: A stationary point process on RY.

e i.e., a random discrete subset of RY,
o sth.,VteRI: b+t ~ b,

@ The Palm version of ¢:

o & := ® conditioned on containing 0,
e or ® seen from a typical point of ®.
e Formally:

1
E [h(do)] = E D1 h(®—x)
xedn[0,1]9
@ Heuristically, for a translation-invariant function g(®, x),

E[g(®0,0)] «— ), g(%,x).

xed
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1. Point Processes

o Mecke’s formula:
For all measurable functions h(®g, x) = 0 (for x € R9):
]E [ZXE‘DO h(d)o’ X)] = E [ZXE(DO h(d)o - X7 _X)] .

o Let g(®g,x,y) := h(Pg—x,y — x) =

Theorem (MTP)

For all measurable functions g(®g, x, y) = 0 that are translation-invariant:

E[Z g(CDO,O,X)] =E[Z g(d)o,x,O)].

XG(DO X€¢0
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2. Unimodular Graphs

@ G.: The space of all rooted graphs (G, 0) (o € V(G)) up to
isomorphisms.

e [G,o0]: A random rooted graph.
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2. Unimodular Graphs

@ G.: The space of all rooted graphs (G, 0) (o € V(G)) up to
isomorphisms.

e [G,o0]: A random rooted graph.
@ It is called unimodular if

E [2 g(G,o,x>] -E [Z 8(G.x. o)] (MTP)
xeG xeG

for all measurable functions g(G, x,y) = 0 (for x,y € V(G)) that are
isometry-invariant.
o Example:
@ Every finite graph G with a uniformly-random root o € V(G).
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2. Unimodular Graphs

@ G.: The space of all rooted graphs (G, 0) (o € V(G)) up to
isomorphisms.

e [G,o0]: A random rooted graph.

@ It is called unimodular if

E [2 g(G,o,x>] -E [Z g(G.x o)] (MTP)

xeG xeG

for all measurable functions g(G, x,y) = 0 (for x,y € V(G)) that are
isometry-invariant.
o Example:
@ Every finite graph G with a uniformly-random root o € V(G).
@ Cayley graphs.

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2023 4/34



2. Unimodular Graphs

@ G.: The space of all rooted graphs (G, 0) (o € V(G)) up to
isomorphisms.

e [G,o0]: A random rooted graph.

@ It is called unimodular if

E [2 ¢(G, >] -E [2 g(G.x o)] (MTP)

xeG xeG

for all measurable functions g(G, x,y) = 0 (for x,y € V(G)) that are
isometry-invariant.
o Example:
@ Every finite graph G with a uniformly-random root o € V(G).
@ Cayley graphs.
© Example: Any graph constructed equivariantly on (the Palm version
of) a stationary point process.
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3. Unimodular Discrete Spaces

e [D,o]: A random rooted discrete metric space.
e D should be boundedly-finite.

o It is called unimodular if for all measurable functions g(D, x,y) = 0
(for x,y € D) that are isometry-invariant,

E [Z g(D,o,x)] =E [Z g(D, x, o)] . (MTP)

xeD xeD
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3. Unimodular Discrete Spaces

e [D,o]: A random rooted discrete metric space.
e D should be boundedly-finite.

o It is called unimodular if for all measurable functions g(D, x,y) = 0
(for x,y € D) that are isometry-invariant,

E [Z g(D,o,x)] =E [Z g(D, x, o)] . (MTP)

xeD xeD

@ (Almost-) Unification of:
e Unimodular graphs,
e Palm version of stationary point processes,
e Point-stationary point processes.
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4. Random Measures

e ®: A stationary random measure on RY.
oie,VteRY: d+t~ .

o Example: Every point process is a random measure.
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4. Random Measures

e ®: A stationary random measure on RY.
oie,VteRY: d+t~ .

o Example: Every point process is a random measure.

o ®g: The Palm version of ¢,

e or ® seen from a typical point.
o Heuristically:

E [g(0,0)] «— f g(®, X)d(x).
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4. Random Measures

e ®: A stationary random measure on RY.
oie,VteRY: d+t~ .

o Example: Every point process is a random measure.

o ®g: The Palm version of ¢,

e or ® seen from a typical point.
o Heuristically:

E [g(0,0)] «— f g(®, X)d(x).

Theorem (MTP)

For all measurable functions g(®g, x, y) = 0 that are translation-invariant:

E [jg(cbo, 0,x)dd>o(x)] =E {Jg(cbo,x, O)dcbo(x)] .
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4. Random Measures

e ®: A stationary random measure on RY.
oie,VteRY: d+t~ .

o Example: Every point process is a random measure.

o ®g: The Palm version of ¢,

e or ® seen from a typical point.
o Heuristically:

E [g(0,0)] «— f g(®, X)d(x).

Theorem (MTP)

For all measurable functions g(®g, x, y) = 0 that are translation-invariant:

E [jg(cbo, 0,x)dd>o(x)] =E {Jg(cbo,x, O)dcbo(x)] .

@ This equation characterizes mass-stationary random measures.
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5. Scaling limits

@ Assume [G,, 0p, p,] is such that

o G,: A finite metric space,
e 0, € G, chosen uniformly at random,
e p,: The counting measure on G,,.

@ Assume [e,Gp, op, dppin] converges weakly.

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2023



5. Scaling limits

@ Assume [Gp, 0y, pt,] is such that

o G,: A finite metric space,

e 0, € G, chosen uniformly at random,

e p,: The counting measure on G,,.
@ Assume [e,Gp, op, dppin] converges weakly.
@ Example:

o 79 = RY.
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5. Scaling limits

@ Assume [Gp, 0y, pt,] is such that
o G,: A finite metric space,
e 0, € G, chosen uniformly at random,
e p,: The counting measure on G,,.
@ Assume [e,Gp, op, dppin] converges weakly.
@ Example:
o 79 = RY.
o Random trees = Brownian continuum random tree.
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5. Scaling limits

@ Assume [Gp, 0y, pt,] is such that

o G,: A finite metric space,
e 0, € G, chosen uniformly at random,
e p,: The counting measure on G,,.

@ Assume [e,Gp, op, dppin] converges weakly.
@ Example:
o 79 = RY.
o Random trees = Brownian continuum random tree.
e Zeros of simple random walk = Zeros of Brownian motion.
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5. Scaling limits

@ Assume [Gp, 0y, pt,] is such that
o G,: A finite metric space,
e 0, € G, chosen uniformly at random,
e p,: The counting measure on G,,.

@ Assume [e,Gp, op, dppin] converges weakly.
@ Example:
e 79 = R4,
o Random trees = Brownian continuum random tree.
e Zeros of simple random walk = Zeros of Brownian motion.
o Cayley graph = A locally-compact group.
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5. Scaling limits

@ Assume [Gp, 0y, pt,] is such that

o G,: A finite metric space,
e 0, € G, chosen uniformly at random,
e p,: The counting measure on G,,.

@ Assume [e,Gp, op, dppin] converges weakly.
@ Example:
o 79 = RY.
o Random trees = Brownian continuum random tree.

e Zeros of simple random walk = Zeros of Brownian motion.
o Cayley graph = A locally-compact group.

@ We will see that there exists an MTP for the scaling limit.
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The Goals

Our goals:
@ A unification of the various versions of the MTP.

@ Generalizing Palm theory in order to use for studying the dimension of
scaling limits.

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2023 8/34



Outline

© Unimodular Continumm Spaces
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Random Continuum Spaces

@ M,:= The space of all (X,o0,u) , where:
o X is a metric space (and is boundedly-compact),

e 0 € X (the root),
e 4 is a measure on X (and is boundedly-finite).
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Random Continuum Spaces

@ M,:= The space of all (X,o0,u) , where:
o X is a metric space (and is boundedly-compact),
e 0 € X (the root),
e 4 is a measure on X (and is boundedly-finite).

@ M., is a Polish space (with the GHP metric).
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Random Continuum Spaces

@ M,:= The space of all (X,o0,u) , where:

o X is a metric space (and is boundedly-compact),
e 0 € X (the root),
e 4 is a measure on X (and is boundedly-finite).

@ M., is a Polish space (with the GHP metric).

e A random rmm space (rooted measured metric space):
A random element [X, 0, ] in M,.

E[f(X, 0,1)] = fM (X, 0, u])dB([X, 0, 1]).
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Unimodular Continuum Spaces

@ M,..:= The space of all (X, o0, p, ).
e pe X is called the second root.

e [X,o0,u]: A random rmm space.

[X, 0, ] is a unimodular random rmm space if for all g:

| [ eto0duta] =& | [ etxo)duta]

where g(0,x) := g(X,0,x, ) and g : My, — RZC is measurable.
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Unimodular Continuum Spaces

@ M,..:= The space of all (X, o0, p, ).
e pe X is called the second root.

e [X,o0,u]: A random rmm space.

[X, 0, ] is a unimodular random rmm space if for all g:

| [ eto0duta] =& | [ etxo)duta]

where g(0,x) := g(X,0,x, ) and g : My, — RZC is measurable.

E[g*(0)] =E[g(0)]
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Trivial Examples

© When p = 0.
o When p = d,.
@ Compact spaces:

o [X,p]: Any random compact measured metric space,
e 0 € X random with distribution proportional to g,
e Then [X, 0, it] is unimodular.

@ Compact unimodular spaces are re-rooting invariant.
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Trivial Examples

When @ = 0.
When @ = d,.
Compact spaces:

o [X,p]: Any random compact measured metric space,
e 0 € X random with distribution proportional to g,
e Then [X, 0, it] is unimodular.

Compact unimodular spaces are re-rooting invariant.

@ In general, heuristically, the root is a typical point:

E[h(0)] «— Jx h(y)p(dy).
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(Palm version of)) Stationary point processes,
o [®o,0, counting(®dg)].
o [R9,0, counting(®g)]. (— no need to have supp(u) = X)

Point-stationary point processes,
Unimodular random graphs,
Unimodular discrete spaces,

(Palm version of) Stationary random measures,

Mass-stationary random measures.
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(Palm version of)) Stationary point processes,
o [®o,0, counting(®dg)].
o [R9,0, counting(®g)]. (— no need to have supp(u) = X)

Point-stationary point processes,

Unimodular random graphs,

Unimodular discrete spaces,

(Palm version of) Stationary random measures,

Mass-stationary random measures.

Unimodular random manifolds (Abért and Biringer, 22).
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Examples: Weak Limits

Any weak limit of a sequence of unimodular spaces is unimodular.
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Examples: Weak Limits

Any weak limit of a sequence of unimodular spaces is unimodular.

Scaling limits are unimodular (under the assumptions already mentioned).
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Examples: Weak Limits

Any weak limit of a sequence of unimodular spaces is unimodular.

Scaling limits are unimodular (under the assumptions already mentioned).

All compact scaling limits have the re-rooting invariance property:
If o' € X is random with distribution proportional to u, then

[Xaolau] ~ [XaO,ll]-
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Examples: Symmetric Spaces

Some symmetric spaces are unimodular:
o [R9,0, Leb].
e Every unimodular topological group (i.e., when the left and right
Haar measures are equal).

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2023 14 /34



Examples: Symmetric Spaces

Some symmetric spaces are unimodular:

o [R9,0, Leb].

e Every unimodular topological group (i.e., when the left and right
Haar measures are equal).
[HY, 0, vol].
Every symmetric metric space (or manifold) with a unimodular
symmetry group (e.g., H" or S"),

e or having an action of a unimodular group that is transitive and
measure preserving.
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Example: Deterministic Spaces

e (X, p): deterministic.
@ When can we find a random o € X s.th. [X, 0, u1] is unimodular?

o Example: Quasi-transitive graphs.
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Example: Deterministic Spaces

(X, p): deterministic.
When can we find a random o € X s.th. [X, 0, ] is unimodular?

Example: Quasi-transitive graphs.

Theorem: ... (a necessary and sufficient condition in terms of
Aut(X, p)).

Example: A horoball.
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9 Properties of Unimodular Spaces
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Subset Selection

Two equivalent definitions:

@ If A< M., is measurable, then
S:=5X,u):={yeX:(X,y,u) € A} is called a factor subset.

@ A factor subset is a map (X, p) — S(X, u) € X such that it is
isometry-equivariant and A := {(X,y, ) : y € S(X, u)} is measurable.
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Subset Selection

Two equivalent definitions:

@ If A< M., is measurable, then
S:=5X,u):={yeX:(X,y,u) € A} is called a factor subset.

@ A factor subset is a map (X, p) — S(X, u) € X such that it is
isometry-equivariant and A := {(X,y, ) : y € S(X, u)} is measurable.

Lemma (Everything Happens at the Root)
If [X, 0, ] is unimodular and S is a factor subset, then:

ocSas < uX\S)=0as ,
P[u(S)>0]>0 <= PloeS]>0.

o € supp(p) a.s.
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Root-Change

e [X,o0,u]: unimodular

@ Assume for each (X, 0, ), a probability measure o = a(x o) on X is
given (isometry-equivariant with some measurability property).

o Let 0’ € X be chosen with distribution a.
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Root-Change

e [X,o0,u]: unimodular
@ Assume for each (X, 0, ), a probability measure o = a(x o) on X is
given (isometry-equivariant with some measurability property).

o Let 0’ € X be chosen with distribution a.

Lemma

@ [X,0,u] ~[X,o0,u] if p is a stationary measure for the Markovian
kernel on X.

@ This holds if f(o,x) is the density of « w.r.t. u at x and f—(0) =1
a.s., where f=(0) := §, f(y,0)u(dy).

@ Iff(o,x) is the density of o w.r.t. u at x (if exists), then the density
of [X,0,u] w.rt. [X,0,u] is f~ (o).

@ This generalizes Mecke's theorem (invariance under bijective
point-shifts).
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Random Walk

e Fix hg such that hj () =1 and h > 0.

hcy) o= | DS D du(z)

@ So, h(1)=h"(-)=1.
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Random Walk

e Fix hg such that hj () =1 and h > 0.

— [ W2hly.2)
hcy) o= | DS D du(z)
@ So, h(1)=h"(-)=1.
o Let [X, 0, ] be random.

@ Define a random walk (x,), on X such that xo = o0 and
Xn+1 ~ h(Xn, )l"
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Random Walk

e Fix hg such that hj () =1 and h > 0.

hcy) o= | DS D du(z)

@ So, h(1)=h"(-)=1.
o Let [X, 0, ] be random.

@ Define a random walk (x,), on X such that xo = o0 and
Xn+1 ~ h(xm )l"

[X, 0, ] is unimodular if and only if (x,), is stationary and reversible; i.e.,

[X7x17u7 (xn+1)n] ~ [X,O,/,L, (Xn)]7
[X70>/~1'7 (X—n)n] ~ [X,O,[,L, (Xn)]'
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Ergodicity

@ An event A is (root-change-) invariant if
[X,o,ule A= [X,y,u]l € A,Vy e X.

e Definition: A unimodular rmm space [ X, o, ] is ergodic when
P[A] € {0,1} for every invariant event A.

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2023 19 /34



Ergodicity

@ An event A is (root-change-) invariant if
[X,o,ule A= [X,y,u]l € A,Vy e X.

e Definition: A unimodular rmm space [ X, o, ] is ergodic when
P[A] € {0,1} for every invariant event A.

Theorem (Ergodic Decomposition)

@ [X,o,pu] is ergodic if and only if the random walk (x,) is ergodic.
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Ergodicity

@ An event A is (root-change-) invariant if
[X,o,ule A= [X,y,u]l € A,Vy e X.

e Definition: A unimodular rmm space [ X, o, ] is ergodic when
P[A] € {0,1} for every invariant event A.

Theorem (Ergodic Decomposition)

@ [X,o,pu] is ergodic if and only if the random walk (x,) is ergodic.

@ Every unimodular probability measure can be uniquely written as a
mixture of ergodic probability measures.
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Outline

@ Palm Theory
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Random Measures

e [X, 0, u,®] is a random element in M2, where

M2 = {(X,0,11,¢) : ¢ is a measure on X}.
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Random Measures

e [X, 0, u,®] is a random element in M2, where

M2 = {(X,0,11,¢) : ¢ is a measure on X}.

@ Assume [X, 0, p, @] is unimodular; i.e., the MTP holds when g
depends on @ as well.
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Random Measures

e [X, 0, u,®] is a random element in M2, where

M2 = {(X,0,11,¢) : ¢ is a measure on X}.

@ Assume [X, 0, p, @] is unimodular; i.e., the MTP holds when g
depends on @ as well.

Theorem (Invariant Distintegration)

The conditional distribution given [X, 0, ] has a version which does not
depend on o.

Non-dependence on the root <> stationarity.
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Random Measures

e [X, 0, u,®] is a random element in M2, where

M2 = {(X,0,11,¢) : ¢ is a measure on X}.

@ Assume [X, 0, p, @] is unimodular; i.e., the MTP holds when g
depends on @ as well.

Theorem (Invariant Distintegration)

The conditional distribution given [X, 0, ] has a version which does not
depend on o.

Non-dependence on the root <> stationarity.

Definition

We say that ® is an equivariant random measure on [X, o0, u].
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Examples

@ & = p or any factor of (X, ).
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@ & = p or any factor of (X, ).

@ The intensity measure of ® is also an equivariant (factor) measure:
AX, ) = E[O(X, p)].
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@ & = p or any factor of (X, ).

@ The intensity measure of ® is also an equivariant (factor) measure:
AX, ) = E[O(X, p)].
© & := the Poisson point process with intensity measure p.
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@ & = p or any factor of (X, ).

@ The intensity measure of ® is also an equivariant (factor) measure:
AX, ) = E[O(X, p)].
© & := the Poisson point process with intensity measure p.
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Towards Palm

@ There is no [0,1]9 here!
The classical definition does not generalize.
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Towards Palm

@ There is no [0,1]9 here!
The classical definition does not generalize.
@ Other definitions of Palm:

@ via the Campbell measure.
@ via a tessellation.
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Palm Via Tessellation

e ®: A stationary point process in RY.

o Equivariant tessellation: Assigning a cell to each point of ¢
equivariantly.
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Palm Via Tessellation

e ®: A stationary point process in RY.

o Equivariant tessellation: Assigning a cell to each point of ¢
equivariantly.

o Fair tessellation: When all cells have equal volumes.
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Palm Via Tessellation

e ®: A stationary point process in RY.

o Equivariant tessellation: Assigning a cell to each point of ¢
equivariantly.

o Fair tessellation: When all cells have equal volumes.

If the cell of x € & contains 0, then ® — x ~ Pg.
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A Generalization
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A Generalization

@ Assume a function h(x,y) = 0 is a function depending on ® (as a
factor of ®) such that

Vyed:h (y):= Jh(x,y)dx 1.

e Example: Given a fair tessellation, let h(x,y) := X if x € cell(y).
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A Generalization

@ Assume a function h(x,y) = 0 is a function depending on ® (as a
factor of ®) such that

Vyed:h (y):= fh(x,y)dx 1.
e Example: Given a fair tessellation, let h(x,y) := X if x € cell(y).

Theorem

Palm of ® is obtained by a biasing and shifting the origin to a point of ®
chosen with distribution proportional to h(0,-); i.e.,

Ploge Al = 1E| 3 14(® ~ y)h(0,y) |
yed

where A is the intensity of ®.

v
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Palm on Unimodular Spaces

o Assume h: M2, — R>C is such that for all (X,y, u, ),

h=(y) = JX h(x,y)du(x) =1 (if p# 0).

@ Bias and choose a new root ~ h(o,-)®; i.e.,
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Palm on Unimodular Spaces

o Assume h: M2, — R>C is such that for all (X,y, u, ),

h)i= [ Hoey)dut) =1 G #0)
@ Bias and choose a new root ~ h(o,-)®; i.e.,

Definition

Define a measure Q on M2 by:
Q) = E| [ 140Xy, 8)h(0,)d00) .
Define the intensity of ® by )\ := |Q| = Q(M?2).

Define the probability measure Py := %Q (if 0 < A < ).
Pg is the distribution of the Palm version.

v
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Palm Via the Campbell Measure

Theorem (Campbell Formula)

For all measurable functions g = 0 on M2, by denoting
g(x,y) = g(X,x,y,p, ),

| [ eloniow)]| - x5 | [ etxorduin).

In addition, Py is the unique probability measure on M?2 with this property.J

@ Corollary. Palm does not depend on the choice of h.
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Unimodularity of Palm

e [X,0,u, ®] unimodular.

Under Py, [ X, 0,®] is unimodular, and so is [X, 0, D, p].
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Unimodularity of Palm

e [X,0,u, ®] unimodular.

Under Py, [ X, 0,®] is unimodular, and so is [X, 0, D, p].

Corollary

Under Py, the Palm of p (as random measure on [ X, 0,®]) is P.
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Unimodularity of Palm

e [X,0,u, ®] unimodular.

Under Py, [ X, 0,®] is unimodular, and so is [X, 0, D, p].

Under Py, the Palm of p (as random measure on [ X, 0,®]) is P.

Palm inversion = Palm
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o If ® = p|s, where S is a factor subset,
e Palm = conditioning on 0 € S.
o If ® is the Poisson point process with intensity measure cpu,
e Palm version is ¢ U {o}.
@ Planar Duals:
e [G,0]: a unimodular planar graph.
o To make the dual G’ of G unimodular:
=GuG,
p := the counting measure of G,
® := the counting measure of G’,
it is enough to consider the Palm of &.

e Adding vertices and edges to a unimodular graph (unimodular
extension) is an instance of Palm.
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Outline

© Amenability

Ali Khezeli (INRIA) Unimodular Continuum Spaces Salzburg, September 2!



Amenability

e Let [X, 0, ] be unimodular.

Theorem (Amenability)

The following are equivalent:

@ There exists a local mean.

@ There exists an approximate mean.
@ Hyperfiniteness.

@ Folner condition.
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Mean

e To (almost) every (X, 0, ), assign a map m: L®(X, u) — R such
that:
e mis a positive linear functional.
e m is isomorphism-invariant.
° Vy eX: m(X,ow = m(X,y#).
e Some measurability condition.

@ Definition: This is called a Local mean.
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Mean

e To (almost) every (X, 0, ), assign a map m: L®(X, u) — R such
that:

e mis a positive linear functional.
e m is isomorphism-invariant.
o Vy e X :imMxou = MX.y,u):
e Some measurability condition.
o Definition: This is called a Local mean.
e To (almost) every (X, 0, it), assign a sequence A, : X — R=9 such
that:

@ )\, is isomorphism-invariant and measurable.
o Vye X :{y(y, )du=1as.
o Vye X ||\ (0,:) = An(y,")|]1 = 0 as.

@ Definition: This is called an approximate mean.
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Hyperfiniteness

@ To (almost) every (X, 0, 1), assign a partition 1 of X such that it is
invariant, measurable, and every element of I1 has finite mass w.r.t. 1.

@ Allow I1 to be random; e.g., depending on a random measure on
(X, 0,p).
o Definition: This is called an equivariant finite partition.

Definition (Hyperfiniteness)
Three definitions:
@ 3 nested equivariant finite partitions 1, s.th. P[| J,Ms(0) = X] = 1.
@ 1 nested equivariant finite partitions 1, s.th.
Vr <o :P[3n: B,(0) € Mp(o)] = 1.
© Vr < o0,Ve > 0,3 an equivariant finite partition I s.th.
P[B/(0o) € MN(0)] < e.
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Folner Condition

Two definitions:

Q@ Vr < oo,Ve > 0,d, an equivariant finite partition I1 s.th.
e[LONO))
p(MN(o))

@ d equivariant nested finite partitions I, s.th.

Vr - w(0:Mnx(0))

(o) 0 2T
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Proof Method

o Let ® be the marked Poisson point process on X with intensity
measure .
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Proof Method

o Let ® be the marked Poisson point process on X with intensity
measure .

@ Consider the Palm version of ¢.
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Proof Method

Let ¢ be the marked Poisson point process on X with intensity
measure .

Consider the Palm version of ¢.

This gives a countable Borel equivalence relation R and the Palm
distribution is an invariant measure.

@ We prove that each definition is equivalent to the analogous definition
for R.

@ We use the amenability theorem for Borel equivalence relations.
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Thank you!
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