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Introduction

* Fix a particle, a convex body K c R3. Instances of K of varying
size are randomly positioned and oriented in R3. This isotropic
system of particles is intersected with a plane.

® We wish to determine the particle size distribution given the
distribution of observed section areas.

® Generalization of the classical Wicksell's corpuscle problem
(Wicksell 1925).

@
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(a) 3D objects (b) 2D observations
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Introduction

® The particles have random sizes, a particle of size A is equal to AK
up to rotation and translation. Let H denote the CDF of the size
distribution.

* We assume:

E(A) = f0°° AdH(N) < oo,

® The integral equation relating H to the CDF of observed section
areas F4 have already been derived under various assumptions. See
for example (Santalé and Kac 2004), (Ohser and Miicklich 2000),
(Benes and Rataj 2004).
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Isotropic Uniformly Random (IUR) sections

* Let [K] denote the set of all planes which intersect K. An IUR
plane hitting K is a plane T chosen uniformly at random from [K].
The probability measure is the unique motion invariant measure on
the space of all planes, restricted to [K].

* Introduction of IUR planes: Davy and Miles 1977.
® Let T be an IUR plane hitting K, define the CDF:
GK(Z) = P(VO|2(K N T) < Z) .

We call Gk the section volume CDF.

® If a particle with size A is hit by the plane, its random section area
is equal in distribution to the area of an IUR section of \K.
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Deriving the stereological integral equation
Lemma (Davy and Miles 1977)

Suppose that Q c R3 is a convex body and K c Q is another convex
body. Let T be an IUR plane hitting Q, then:

@ Hitting probability:
b(K)
b(Q)

® Conditional property: Given that T hits K, i.e. Tn K #@, T is an
IUR plane hitting K.

P(TnK +@)=
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Deriving the stereological integral equation
Lemma (Davy and Miles 1977)

Suppose that Q c R3 is a convex body and K c Q is another convex
body. Let T be an IUR plane hitting Q, then:

@ Hitting probability:
b(K)
b(Q)

® Conditional property: Given that T hits K, i.e. Tn K #@, T is an
IUR plane hitting K.

P(TnK +@)=

* Suppose the particles are contained in Q € 3. If AK c Q and T is
an IUR plane hitting @ then:

b(AK) B )\E(K)
b(Q) b(Q)
The probability that a particle is sampled is proportional to its size.
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The stereological integral equation

® Consider the following two facts:
* Hb" is the size distribution of particles hit by the section plane.
A
Hb()\) _ /OoonH(X) )
Jo xdH(x)

® Given that a particle of size A appears in the section plane, its area
is distributed according to Gyk.
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The stereological integral equation

® Consider the following two facts:
* Hb" is the size distribution of particles hit by the section plane.
A
Hb(>\) _ /(lonH(X) )
Jo xdH(x)

® Given that a particle of size A appears in the section plane, its area
is distributed according to Gyk.

® As a consequence:

Fa(a) = fooo Gk (a)dHP (M) = ﬁ fooo Gk (a)AdH(N).

* Note that Gyk(z) = Gk(z/A?). In other words, if Z ~ Gk, then
ZX\? ~ Gyk. Hence,

a

Fa(a) = ﬁ A (Az)AdH()\).
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Separating shape and size
Lemma (Jongbloed, Vittorietti, and TJ 2023b)

Consider a distribution function H with length-biased version H®.
Suppose Z ~ Gy and Ny ~ H? with Z and /\,2) independent. Set
A=ZN2. Then, A~ Fa, and Fa, Gk and H” are related via:

Fa(a) = fOMGK(%)de(A).
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Separating shape and size
Lemma (Jongbloed, Vittorietti, and TJ 2023b)

Consider a distribution function H with length-biased version H®.
Suppose Z ~ Gy and Ny ~ H? with Z and /\i independent. Set
A=ZN2. Then, A~ Fa, and Fa, Gk and H” are related via:

Fa(a) = fOMGK(%)de(A).

Proof.

Let X, Y, Z be non-negative random variables, with CDF Fx, Fy and
F7 respectively. If X = YZ with Y and Z independent, then their
distribution functions are related via:

= X
Fx(X)=/ FY(—)sz(Z)-
0 z
Substituting P(A2 < \) for H?()\) = P(A, < \) yields the result. O
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The Mellin-Stieltjes transform

Definition (Mellin-Stieltjes transform)

Given a non-negative random variable X, with CDF F, the
Mellin-Stieltjes transform of X is defined as:

Mix(s) = E(X*1) = fo “ S )

for s € C, whenever the integral is absolutely convergent.

* Note, for non-negative independent random variables X and Y:
Mxy(s) =E((XY)*™) = Mx(s)My(s),

whenever these expressions are finite.
o If [ x“1dF(x) < oo for c € R, then Mx(c + it) < oo for all t € R,
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The strip of analyticity

® Define:

St(a,B) :={seC:a<R(s) <}
St[a, B] :={s € C: a < R(s) < B}.
® |f we find a < 8 such that the Mellin transform of X converges

absolutely on St[a, 8], then M is analytic on St(«, 3)
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|dentifiability and inversion formula
Theorem (Jongbloed, Vittorietti, and TJ 2023b)

Suppose there is a CDF H such that Fp, Gk and H are related via:

Fa(a) - ﬁfow 6ic(33) aHO. &

© If [;° 27*dGk(z) < oo for some o> 0, then there is only one
distribution function H on (0, co) satisfying (1).

@ Assume [, x**°dH(x) < oo, for some § > 0. Then, there is only
one such distribution function H on (0, co0) satisfying (1).
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|dentifiability and inversion formula
Theorem (Jongbloed, Vittorietti, and TJ 2023b)

Suppose there is a CDF H such that Fp, Gk and H are related via:

Fa(a) - ﬁfow 6ic(33) aHO. &

© If [;° 27*dGk(z) < oo for some o> 0, then there is only one
distribution function H on (0, co) satisfying (1).

@ Assume [, x**°dH(x) < oo, for some § > 0. Then, there is only
one such distribution function H on (0, co0) satisfying (1).

o Let Z ~ Gk and A ~ F,. If one of the conditions is satisfied and H?
is continuous, there exists a ¢ € R such that:

1 T Ma(s) xSt
H® = | —/ -— d >0.
(V&) Tt 2717 JemiT Mz(s) s 5 X
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Inversion formula proof sketch

* Recall, letting A~ Fa, Z ~ Gk and Ap ~ H? with Z and A,
independent we have:
AL ZA.

* Due to the moment conditions we have for s € St(max{l1-«,1},1):

Ma(s) = Mz(5) Mpa ).

® Let c e (max{l-«,1},1). Since analytic functions only have
isolated zeros, M,\i(c+ it) = Ma(c+it)[Mz(c+it) for almost all
teR.
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Inversion formula proof sketch

* Assuming H? is continuous, the Mellin inversion theorem (Kawata
1972) yields:

Ho (VR) =P (W =) = fim o [ M) as
T—o0 270 iT b S

.1 periT o My(s) xstt

= lim —f - _—
Tooo 21 Je-iT  Mz(s) s

ds

for x > 0.

® H can be retrieved via:

foA LadH?(x)

H(\) = 5 ide( 3
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Absolute continuity of Gy

® Let T be an IUR plane hitting K, Gk is given by:
GK(Z) = P(VO|2(K N T) < Z) .

® Suppose Gk has a Lebesgue density gk, supported on (0, amax)-
Then, F4 is absolutely continuous with density:

—dH(N).

fa(a) = ]E(/\) ngK ()\2)

* Relevance for statistical inference: the likelihood is well-defined.
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Parameterization of IUR planes

S27L = (Gt xn) € B ] = 1,02 0,
Tos={xeR": (x,0) = s}, (2)

Definition (IUR plane)

An IUR plane T hitting a fixed K € K", n>2, is defined as T = Tg s
where (0, S) has joint probability density, fx : S™! x R — [0, c0) given
by:

1 .
(0, 5) = KD ifKnTys+@
0 otherwise,

with Ty s as in Eq. (2) and

u([K]):[sn_l [:n{KnTQ,sm}dsde:an_l (51) B(K).
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Brunn's theorem

® Recall the following classical result:
Theorem (Brunn)

Let K cR" be a convex body, n>2. Fix @ e S"™'. The function
fo: R — [0,00) given by:

fy(s) = volp_1 (K n Tys) 7T,

is concave on its support.
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Absolute continuity of Gy

Theorem (Jongbloed, Vittorietti, and TJ 2023a)

Let K c R" be a convex body, n>?2. For § € S™™1, define the function
fo: R - [0,00) by:

fy(s) = vol 1 (K N Tys) ™.
If fy has a unique maximum and is continuous on R for almost all

6 € S™ 1, then Gk is absolutely continuous with respect to Lebesgue
measure.

* Condition is satisfied for strictly convex bodies.
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Main idea

* Writing Gk as a mixture distribution, conditioning on a fixed
direction © = 0. With (©,S) ~ fx and fg the marginal density of
o.

Gi (2"*) =P (vol, 1(K 1 To 5))71 < 2)

- /S P(f(S) < 2|0 = 0) fo (6)0.
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Main idea

* Writing Gk as a mixture distribution, conditioning on a fixed
direction © = 0. With (©,S) ~ fx and fg the marginal density of
o.

Gi (2"*) =P (vol, 1(K 1 To 5))71 < 2)
- fsf_l P(f(S) < 2|© = 0) fo (8)a0.
* Conditional on © =6 we have S ~U(-hk(-0), hx(0)).
* For almost all § € S""1, the CDF
1
z»—>IP’(voI,, (KN Tes)mt <20 = 9)

is continuous on R and convex on its support.

® Fubini's theorem yields the desired result.

z
TUDelft 17 /21



Convex polytopes

® For convex polytopes the function fy does not in general have a
unigue maximum.

Lemma

Let P c R" be a full-dimensional convex polytope, n>2. Fix § € S™
and define the function fy: R — [0, 00) by:

fy(s) = vol_1 (P Tys) 1.

Suppose fy attains its maximum on the entire interval [s_,s. ], with
s_ <s,. Then, any plane Ty s with s € [s_,s.] intersects the same edges
of P and these edges are parallel.
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Convex polytopes

® For convex polytopes the function fy does not in general have a
unigue maximum.

Lemma

Let P c R" be a full-dimensional convex polytope, n>2. Fix § € S™
and define the function fy: R — [0, 00) by:

fy(s) = vol_1 (P Tys) 1.

Suppose fy attains its maximum on the entire interval [s_,s. ], with
s_ <s.. Then, any plane Ty s with s € [s_,s,] intersects the same edges
of P and these edges are parallel.

Theorem (Jongbloed, Vittorietti, and TJ 2023a)

Let P cR" be a full-dimensional convex polytope, n>2. Let Gp be its
section volume CDF. Then, Gp is absolutely continuous.
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Main idea of proof

* For "non-maximal” sections we proceed as before.

® In general, fy attains its maximum in the entire interval
[5-(6),s.(0)], possibly with s_(8) =s,(0). Define:

D:={0eSI " :5.(0)>s_(0)}.
® D may be written as a disjoint union: D = Uf-‘:l D;.

For any 6 € D; any plane Ty s with s € [s_(0),s.(0)] intersects the
same parallel edges of P.
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Main idea of proof

* For "non-maximal” sections we proceed as before.

® In general, fy attains its maximum in the entire interval
[5-(6),s.(0)], possibly with s_(8) =s,(0). Define:

D:={0eSI " :5.(0)>s_(0)}.

® D may be written as a disjoint union: D = Uf-‘zl D;.
For any 6 € D; any plane Ty s with s € [s_(0),s.(0)] intersects the
same parallel edges of P.

* Take ¢; € S™ ! collinear to the edge directions corresponding to D;.
For 6 € D; there exists a v; > 0 such that:

Vi

6, @)l

* If we draw © ~ /(5" 1), then the random variable |(©, ¢;)| has a
Lebesgue density.
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Final remark

e Statistical results: the identifiability result as well as the absolute
continuity of Gk for a large class of convex bodies was used to
define a non-parametric maximum likelihood estimator of H?,
which is proven to be strongly consistent. More details in
Jongbloed, Vittorietti, and TJ 2023b

Thank you for your attention!
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