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The Brunn-Minkowski inequality

Thm. Let K0,K1 be convex bodies in Rn and let t ∈ [0, 1]; then

Vn((1− t)K0 + tK1)1/n ≥ (1− t)Vn(K0)1/n + tVn(K1)1/n. (BM)

Equality holds if and only if K0 and K1 are homothetic, or they lie
in parallel hyperplanes.

Here:

I Vn = volume (Lebesgue measure);

I

(1− t)K0 + tK = {(1− t)x + ty : x ∈ K0, y ∈ K1}.

Equivalently: the functional V
1/n
n is concave in the class of convex

bodies of Rn, equipped with the Minkowski addition.
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Links with other inequalities

I The Brunn-Minkowski inequality provides a simple proof of
the isoperimetric inequality.

I The Brunn-Minkowski inequality is naturally connected to the
Prékopa-Leindler inequality, which represents its functional
counterpart and gives an easy proof of it.

I The Brunn-Minkowski inequality is a special case of the family
of Alexandrov-Fenchel inequalities.

...

I Much more about this topic can be found in: R. J. Gardner,
The Brunn-Minkowski inequality, 2002.
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Prékopa-Leindler inequality, which represents its functional
counterpart and gives an easy proof of it.

I The Brunn-Minkowski inequality is a special case of the family
of Alexandrov-Fenchel inequalities.

...

I Much more about this topic can be found in: R. J. Gardner,
The Brunn-Minkowski inequality, 2002.



Links with other inequalities

I The Brunn-Minkowski inequality provides a simple proof of
the isoperimetric inequality.

I The Brunn-Minkowski inequality is naturally connected to the
Prékopa-Leindler inequality, which represents its functional
counterpart and gives an easy proof of it.

I The Brunn-Minkowski inequality is a special case of the family
of Alexandrov-Fenchel inequalities.

...

I Much more about this topic can be found in: R. J. Gardner,
The Brunn-Minkowski inequality, 2002.



Links with other inequalities

I The Brunn-Minkowski inequality provides a simple proof of
the isoperimetric inequality.

I The Brunn-Minkowski inequality is naturally connected to the
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A Brunn-Minkowski type inequality for intrinsic volumes

Given a convex body K , let

V0(K ),V1(K ), . . . ,Vn(K )

denote its intrinsic volumes.

As a consequence of the Alexandrov-Fenchel inequalities, we
obtain, for i ≥ 1:

Vi ((1− t)K0 + tK1)1/i ≥ (1− t)Vi (K0)1/i + tVi (K1)1/i

for every K0,K1 ∈ Kn, for every t ∈ [0, 1].

Note that Vi is i-homogeneous:

Vi (sK ) = s iVi (K ) ∀K ∈ Kn, s > 0.

Hence, as for the volume, Vi raised to the reciprocal of its
homogeneity order, is concave in Kn.
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Inequalities of Brunn-Minkowski type

Let us consider a functional F : Kn → R such that:

I F(K ) ≥ 0 for every K ∈ Kn;

I F is α-homogeneous (α 6= 0):

F(sK ) = sα F(K ), ∀ s ≥ 0, K ∈ Kn.

—————–

We say that F verifies a Brunn-Minkowski type inequality if for
every K0, K1 ∈ Kn, and for every t ∈ [0, 1]:

F((1− t)K0 + tK1)1/α ≥ (1− t)F(K0)1/α + tF(K1)1/α.
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Examples from mathematical physics

The following functionals verify a Brunn-Minkowski type inequality.

I The electrostatic capacity (Borell, 1983; Caffarelli, Jerison
& Lieb, 1996).

I The torsional rigidity (Borell, 1985).

I The principal frequency, or first Dirichlet eigenvalue of the
Laplace operator (Brascamp & Lieb, 1976).

—————–

Our goal was to extend these Brunn-Minkowski inequalities to the
Gauss space. So far, we managed to find some new results in this
direction for one of the above functionals, namely the principal
frequency, on which we will now focus.
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The principal frequency of a convex body

Let K ∈ Kn and let int(K ) be its interior; given
v ∈ C 1(int(K )) ∩ C (K ), we define its Rayleigh quotient:

R[v ] =

∫
K
|∇v |2dx∫
K
v2dx

.

The principal frequency of K is

λ(K ) = inf{R[v ] : v ∈ C 1(int(K )) ∩ C (K ), v = 0 on ∂K}.

By its definition, λ(K ) is also the best (i.e. the largest) possible
constant c for which the following Poincaré inequality holds true:

c

∫
K
v2dx ≤

∫
K
|∇v |2dx , ∀ v = 0 on ∂K .
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c

∫
K
v2dx ≤

∫
K
|∇v |2dx , ∀ v = 0 on ∂K .



The principal frequency of a convex body
Let K ∈ Kn and let int(K ) be its interior; given
v ∈ C 1(int(K )) ∩ C (K ), we define its Rayleigh quotient:

R[v ] =

∫
K
|∇v |2dx∫
K
v2dx

.

The principal frequency of K is

λ(K ) = inf{R[v ] :

v ∈ C 1(int(K )) ∩ C (K ), v = 0 on ∂K}.

By its definition, λ(K ) is also the best (i.e. the largest) possible
constant c for which the following Poincaré inequality holds true:
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λ = first eigenvalue of the Laplace operator

The minimizer v̄ of the problem

inf
v |∂K=0

∫
K
|∇v |2dx∫
K
v2dx

= λ(K )

verifies: {
∆v̄ = −λ(K )v̄ , v̄ > 0 in int(K ),
v̄ = 0 on ∂K .

Here

∆v̄ = trace(D2v̄) =
n∑

i=1

v̄ii ,

is the Laplace operator.
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Properties of λ

λ = λ(K ) is:

I continuous with respect to the Hausdorff metric;

I is rigid motion invariant;

I homogeneous of degree −2:

λ(sK ) =
1

s2
λ(K ), ∀K ∈ Kn, ∀ s > 0.
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Detour: an isoperimetric type inequality for λ

Theorem (Faber-Krahn inequality). Among all convex bodies
with fixed volume, λ is minimized by balls: for every K ∈ Kn,

λ(K ) ≥ λ(B),

where B is a ball such that Vn(B) = Vn(K ).

Behind this result there is the Polya-Szegö principle, which
implies in particular that the Rayleigh quotient is monotone
decreasing with respect to Steiner symmetryzations.
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The Brunn-Minkowski inequality for λ

Theorem (Brascamp & Lieb, 1976). Let K0,K1 ∈ Kn, and
t ∈ [0, 1]. Then

λ((1− t)K0 + tK1) ≤ (1− t)λ(K0) + tλ(K1).

By a standard homogeneity argument, the previous result implies

λ((1− t)K0 + tK1)−1/2 ≥ (1− t)λ(K0)−1/2 + tλ(K1)−1/2,

i.e. the Brunn-Minkowski inequality for λ.
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Back to the volume - The passage to the Gauss space

We denote by γn the Gauss measure in Rn:

γn(A) =
1

(2π)n/2

∫
A
e−

|x|2
2 dx , A ⊂ Rn, measurable.

The following inequalities hold, ∀K0,K1 ∈ Kn, ∀ t ∈ [0, 1].

I The Gaussian multiplicative Brunn-Minkowski inequality:

γn((1− t)K0 + tK1) ≥ γn(K0)1−tγn(K1)t

(consequence of the Prékopa-Leindler inequality, 1971).

I The Ehrhard inequality (Ehrhard, 1983):

Φ−1(γn((1−t)K0+tK1)) ≥ (1−t)Φ−1(γn(K0))+tΦ−1(γn(K1)),

where

Φ(x) =
1√
2π

∫ x

−∞
e−s

2/2ds.
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Second detour: the isoperimetric inequality in Gauss space

The Ehrhard inequality can be used to prove the Gaussian
isoperimetric inequality (which is stated here for convex bodies).

Theorem (Borell, ’71, Sudakov & Tsirelson, ’75). Among all
convex bodies with fixed Gaussian measure, the half spaces
minimizes the Gaussian perimeter.
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The Gardner-Zvavitch question

Question (Gardner & Zvavitch, 2010). Given K0,K1 ∈ Kn,
containing the origin, and t ∈ [0, 1], is it true that

γn((1− t)K0 + tK1)1/n ≥ (1− t)γn(K0)1/n + tγn(K1)1/n ? (*)

(Dimensional Brunn-Minkowski inequality in Gauss space).

I The assumption that 0 ∈ K0,K1 is necessary.

I (*) is stronger than the Gaussian multiplicative
Brunn-Minkowski inequality, and it is not implied by the
Ehrhard inequality.

I The exponent 1/n is the best possible.
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Main steps in the solution of the Gardner-Zvavitch question

γn((1− t)K0 + tK1)1/n ≥ (1− t)γn(K0)1/n + tγn(K1)1/n

I Gardner & Zvavitch (2010) verified that the answer is “yes”
for coordinate boxes and slabs, containing the origin, and
dilatates of a common origin-symmetric convex body (this last
case shows the connection of their question with the
B-conjecture).

I Nayar & Tkocz (2013) showed by counterexamples that the
answer is “no” for general convex bodies containing the origin.

I Kolesnikov & Livshyts (2021) proved the inequality for origin
symmetric convex bodies with the exponent 1/n replaced by
2/n.

I The affirmative answer to the question for origin-symmetric
convex bodies was given by Eskenazis & Moschidis (2021).
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The Gaussian principal frequency

Let K ∈ Kn; we set, for v ∈ C 1(int(K )) ∩ C (K ),

Rγ [v ] =

∫
K
|∇v |2dγn∫
K
v2dγn

,

and

λγ(K ) = inf{Rγ [v ] : v ∈ C 1(int(K )) ∩ C (K ), v = 0 on ∂K}.

I λγ(K ) is the largest possible constant c for which the
following Gaussian Poincaré inequality holds true:

c

∫
K
v2dγn ≤

∫
K
|∇v |2dγn, ∀ v = 0 on ∂K .

I λγ is rotation invariant, but it is neither translation
invariant, nor homogeneous.
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c

∫
K
v2dγn ≤

∫
K
|∇v |2dγn, ∀ v = 0 on ∂K .

I λγ is rotation invariant, but it is neither translation
invariant, nor homogeneous.



The Gaussian principal frequency
Let K ∈ Kn; we set, for v ∈ C 1(int(K )) ∩ C (K ),

Rγ [v ] =

∫
K
|∇v |2dγn∫
K
v2dγn

,

and

λγ(K ) = inf{Rγ [v ] : v ∈ C 1(int(K )) ∩ C (K ), v = 0 on ∂K}.

I λγ(K ) is the largest possible constant c for which the
following Gaussian Poincaré inequality holds true:
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The associated boundary value problem

The minimiser v̄ of the problem

inf
v |∂K=0

∫
K
|∇v |2dγn∫
K
v2dγn

= λγ(K )

verifies:{
∆v̄−〈∇v̄ , x〉 = −λγ(K )v̄ , v̄ > 0 in int(K ),
v̄ = 0 on ∂K .

u 7→ ∆u − 〈∇u, x〉

is the Hermite, or Ornstein-Uhlenbeck, operator.
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Third detour: an isoperimetric type inequality for λγ

Theorem (Ehrhard, 1984). Among all convex bodies with fixed
Gaussian volume, λγ is minimized by half-spaces: for every
K ∈ Kn,

λγ(K ) ≥ λγ(H)

where H is any half-space such that γn(K ) = γn(H).

I This result fully parallels the Gaussian isoperimetric inequality.

I The proof exploits a (de-)symmetrization procedure (Gaussian
symmetrization), which preserves the Gaussian measure and
reduces λγ (and the Gaussian perimeter).
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A convexity inequality for λγ

Theorem (Francini, Livshyts, Salani, C. - 2023). Let
K0,K1 ∈ Kn be origin symmetric convex bodies, and let t ∈ [0, 1].
Then

λγ((1− t)K0 + tK1) ≤ (1− t)λγ(K0) + tλγ(K1). (*)

I Inequality (*) coincides with that found by Brascamp & Lieb
for λ in the standard case (i.e with the Lebesgue measure in
place of the Gaussian measure).

I Due to the lack of homogeneity, (*) does not imply the
stronger inequality:

λγ((1− t)K0 + tK1)−1/2 ≥ (1− t)λγ(K0)−1/2 + tλγ(K1)−1/2.
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Towards the proof - A crucial tool

Theorem (FLSC - 2023). Let K ∈ Kn be origin symmetric. Let
u be a solution of the boundary value problem:{

∆v − 〈∇v , x〉 = −λγ(K )v , v > 0 in int(K ),
v = 0 on ∂K .

Then u is log-concave.

The same property holds in the standard case (Brascamp & Lieb,
1976).

Several approaches, developed in the standard case, can be
adapted to the Gaussian case.

E. Milman suggested to us an additional argument based on the
original proof by Brascamp & Lieb.
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The proof of the convexity inequality

λγ((1− t)K0 + tK1) ≤ (1− t)λγ(K0) + tλγ(K1)

Given K0 and K1 we consider v0 and v1 such that{
∆v0 − 〈∇v0, x〉 = −λγ(K0)v0, v0 > 0 in int(K0),
v0 = 0 on ∂K0.{
∆v1 − 〈∇v1, x〉 = −λγ(K1)v1, v1 > 0 in int(K1),
v1 = 0 on ∂K1.

v0 = e−u0 , v1 = e−u1 , u0, u1 convex.

We set, for z ∈ Kt = (1− t)K0 + tK1,

ut(z) = inf
(1−t)x+ty=z

(1− t)u0(x) + tu1(y) = (1− t) · u0� t · u1.

ut is convex in Kt . We also set

vt = e−ut .
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