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Known non-asymptotic results

Vold := Lebesgue measure of Rd , fk(·) := number of k-dimensional faces

Mean-value identities

Ef0(Kn) = n

(
1− E(Vold(Kn−1))

Vold(K )

)
References. Efron (1965), Buchta (2005)

Monotonicity results K 2-dimensional, Vol2(K ) = 1, Vn(K ) = E(Vol2(Kn))

Vn( ) ≤ Vn(K ) ≤ Vn( )

References. Blaschke (1917), Busemann (1953), Buchta (1983), Groemer (1973)

Explicit moment formulas K = Bd , fk(Kn):= number of k-dimensional faces

References. Kabluchko (2021)



Known asymptotic results

Expectation estimates
Vold := Lebesgue measure of Rd , fk(·) := number of k-dimensional faces

K smooth K polytope

E(Vold(K \ Kn)) ∼
n→∞

c1(d ,K )n−
2

d+1 c ′1(d ,K )n−1 logd−1(n)

E(fk(Kn)) ∼
n→∞

c2(d , k,K )n
d−1
d+1 c ′2(d , k,K ) logd−1(n)

References. Rényi & Sulanke (1963), Schneider & Wieacker (1980), Bárány (1989), Reitzner (2003)

Variance estimates, CLT and concentration
References. Reitzner (2005), Bárány & Reitzner (2010), PC & Yukich (2014), Vu (2005), Grote & Thäle (2018)



Typical facet

Notation K smooth convex body, κ(·) := Gauss curvature along ∂K

Zn := E(fd−1(Kn)) ∼ cdΩ(K )n
d−1
d+1

where Ω(K ) = Vold(K )−
d−1
d+1
∫
∂K κ(z)

1
d+1dz

Reference. Raynaud (1970)

Facets of Kn Simplices a.s.

Typical facet Fn For every non-negative measurable function f ,

Ef (Fn) =
1

Zn
E
( ∑

F∈{facets of Kn}

f (F )

)

Asymptotically equivalent to a uniform choice in the facets of Kn

Reference. Bonnet & O’Reilly (2022)



Location of a facet

Height and z-value of a facet
Each facet is included in a section of K by a hyperplane H.

z(H) := support point in ∂K of the closest parallel hyperplane
which is tangent to ∂K
h := distance from that tangent hyperplane to H

Notation Hz(h) := H, dist(F ) := h



Functionals of the typical facet

Height dist(Fn) Volume Vold−1(Fn) Diameter diam(Fn)



Aims

Regime of the convergence in distribution
Limit distributions for rescaled functionals of the typical facet

P(nαf (Fn) ≥ t, z(Fn) ∈ ·)→ ??

Convergence in process and comparison to the KPZ universality
class

Regime of the extremes
Limit measure when fn is a properly rescaled functional

ZnP(fn(Fn) ∈ ·, z(Fn) ∈ ·)→ ??

Consequences for the limit extremal distributions

P( max
F∈{facets of Kn}

fn(F ) ≤ t)→ ??
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Rescaling: critical distance from the boundary

Volume of a cap of K associated with (z , h) ∈ ∂K × (0,∞)

ϕz(h) ∼ cd√
κ(z)

h
d+1

2 when h→ 0

Probability of having a facet

P(X1, · · · ,Xd generate a facet) =

(
1− ϕz(h)

Vold(K )

)n−d
+ O(e−cn)

nϕz(h) = Θ(1) when h = n−
2

d+1

Rescaled functionals

Height Volume Diameter

n
2

d+1 dist(Fn) n
d−1
d+1 Vold−1(Fn) n

1
d+1 diam(Fn)



Convergence in distribution of the rescaled functionals

X For any t > 0 and B ∈ B(∂K ), when n→∞,

P(n
2

d+1 dist(Fn) ≥ t, z(Fn) ∈ B)

→ cd

∫
B
e−βd,z t

d+1
2

∫ ∞
0

e−w
(
βd ,z t

d+1
2 + w

)d−1
dw

where βd ,z =
κd−12

d+1
2

(d+1)
√
κ(z)Vold (K)

(κd = Vold(Bd))

X Similar results for n
d−1
d+1 Vold−1(Fn) and n

1
d+1 diam(Fn)

Particular case K = B2, ndist(Fn) typical height in nB2

P(n−
1
3 (ndist(Fn)) ≥ t) ∼ ct

3
2 exp

(
− 4
√

2
3π t

3
2

)
when n, t →∞
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Rescaling

Exponent
f dist Vold−1 diam

α 2
d+1

d−1
d+1

1
d+1

Rescaled functional of the facet

fn(Fn) := a−1
0 nf (Fn)

1
α − (a1 log n + a2 log log n + a3)

with ai , 0 ≤ i ≤ 3, positive constants depending on d and K

Associated function along ∂K

f dist Vold−1 diam

ψ ∝
√
κ(z) κ(z)−

1
d−1 c

− d+1
2

z,1

√
κ(z)

where κ(·) Gaussian curvature on ∂K and cz,1 first principal curvature

a0 =
d + 1

κd−1
Vold(K ) max

z∈∂K
ψ(z), a1 =

d − 1

d + 1



Associated measure and asymptotic support

Associated measure

µn(A× B) := ZnP(fn(Fn) ∈ A, z(Fn) ∈ B), A ∈ B(R), B ∈ B(∂K )

where Zn = E(fd−1(Kn)) ∼ cdΩ(K )n
d−1
d+1

Asymptotic support on ∂K (∂K )max := argmax ψ

Example 1 When f = dist, (∂K )max = argmax κ

Example 2 When f = Vold−1, (∂K )max = argmin κ



Convergence in the regime of the extremes

µn(A× B) = ZnP(fn(Fn) ∈ A, z(Fn) ∈ B)

For τ ∈ R and admissible K ,

µn(· × · ∩ ((τ,∞)× ∂K ))→1(τ,∞)(x)e−xdx × ν(∂K)max

where ν(∂K)max is a probability measure with support in (∂K )max.

dim((∂K )max) = d − 1 Convergence in total variation

When f = dist or Vold−1, ν(∂K)max = Unif(∂K)max

dim((∂K )max) < d − 1 Weak convergence

When f = dist or Vold−1, ν(∂K)max has a density ∝ (det(Az))−
1
2 ,

Az being the Hessian matrix of κ at z .
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Strategy

Aim when f = dist or Vold−1, maxF∈{facets of Kn} fn(F )
D→ ??

Prerequisite Convergence of ZnP(fn(Fn) ≥ τ) to e−τ

The joint measures ZnP(fn(Fn) ∈ ·, z(Fn) ∈ ·) tell the distribution
of the location of the exceedances.

Mixing conditions

Maximum of the volumes Maximum of the heights

Facets asymptotically Exceedances by blocks
independent ↪→ Use of the blocking method



Maxima of the facet heights and volumes

fn(Fn) = a−1
0 nf (Fn)

1
α − (a1 log n + a2 log log n + a3)

When f = dist or Vold−1, max
F∈{facets of Kn}

fn(F )
D→ G

where G is a Gumbel variable, i.e. P(G ≤ t) = e−e
−t

, t ∈ R.

Hausdorff distance

When f = dist, max
F∈{Facets of Kn}

fn(F ) and the rescaled version of

dH(Kn,K ) have same limit distribution.

Reference. Bárány (1989), Bräker, Hsing & Bingham (1998)



Poisson approximation in the case f = Vold−1

fn(Fn) = a−1
0 nVold−1(Fn)

d+1
d−1 − (a1 log n + a2 log log n + a3)

X Poisson convergence for the Kantorovich-Rubinstein distance of
the point process of {fn(F ),F ∈ {Facets of Kn}}

X Poisson convergence of the point process of the couples
(fn(F ), z(F )) when dim((∂K )max) = d − 1

References. O. Bobrowski, M. Schulte, D. Yogeshwaran (2021)
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Integral representation and change of variables

Integral formula

ZnP(fn(Fn) ∈ A, z(Fn) ∈ B) =
(n
d

) ∫
Kd 1(· · · )

(
1− ϕz (h)

Vold (K)

)n−d
dx1...dxd
Vold (K)d

+ O(e−cn)

where ϕz(h):= volume of the cap of K associated with (z , h)

Blaschke-Petkantschin formula

∂K

z
h

H

xH1

xH2

xH3

dx1 · · · dxd = (d − 1)!
[
Vold−1(Conv(xH1 , · · · , xHd ))dxH1 · · · dxHd

]
dH

Change with (z , h) coordinates

dH = κ(z)dzdh



Asymptotic stochastic equivalence

I The position (z(Fn), h(Fn)) of the facet is chosen with density

proportional to κ(z)
(

1− ϕz (h)
Vold (K)

)n−d
ϕ′z(h)d+1.

I Conditional on (z(Fn), h(Fn)) = (z , h), the d vertices
X1, · · · ,Xd in Hz(h)∩K are chosen as i.d. points in the osculating
ellipsoid Ez(h) with density proportional to Vold−1(Conv(x1, · · · , xd)).

Ez(h) :
1

2

d−1∑
i=1

cz,i (x
(i))2 ≤ h in the proper frame

where cz,1, · · · , cz,d−1 are the principal curvatures of ∂K at z .

I Fn = Sz(h) = Conv(X1, · · · ,Xd)



New integral representation and additional arguments

ZnP(fn(Fn) ∈ A, z(Fn) ∈ B)

∼ nd

d!

∫
z∈B

∫ `z
0 κ(z)

(
1− ϕz (h)

Vold (K)

)n−d
(ϕ′z(h))d+1P(fn(Sz(h)) ∈ A)dhdz

I Negligibility of the event {d(z(Fn), (∂K )max) > ε}

I Two-term expansion of ϕz(h) (and of ψ(z) near a maximum)

I Distribution tail of Vold−1(Sz(h)) or diam(Sz(h))

I Calibration of the constants accordingly



Thank you for your attention!
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