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Introduction
Let Mn be either the Euclidean space Rn, hyperbolic space Hn or spherical
space Sn for n ≥ 2. We write VMn to denote the n-dimensional Lebesgue
measure on Mn, and dMn(x, y) to denote the geodesic distance between
x, y ∈ Mn. We use δMn to denote the Hausdorff distance in Mn.
For a convex body K ⊂ Mn, we use the notation w (K) for the minimal width
(or thickness) of K, where the width function depends on the space Mn. For
a supporting hyperplane H, the width of K at H, denoted as w (K,H), is
the distance of H and the furthest (ultra)parallel supporting hyperplane to
H in Rn and in Hn. On the sphere, w (K,H) is the smallest possible angle
enclosed by H and another supporting hyperplane to K. These width func-
tions are all monotone, continuous, and their maximal value is the diameter
of K, denoted by diamMnK [3]. We call a convex body K ⊂ Mn reduced, if
for any convex body K0 ⊊ K, w (K0) < w (K).

The isominwidth problem
In 1921, Pál proved for convex bodies in R2, that for a fixed thickness w, the
area is minimal if and only if the convex body is a regular triangle [7]. Clearly,
the optimizer of this problem is reduced. In the spherical case, K. Bezdek and
Blekherman proved that for w ≤ π

2 , area is again minimized by the regular
triangle [1]. In these cases, we have the following optimal stability result.

Theorem (Isominwidth stability [4])
Let M2 denote one of R2 and S2. Let Tw ⊂ M2 denote a regular triangle
of thickness w > 0 (w ≤ π

2 , if M2 = S2). There exists constants cw, εw > 0
depending only on w such that for any ε ∈ [0, εw) and any convex body
K ⊂ M2 with VM2(K) ≤ VM2(Tw) + ε we have δM2(K,T ) ≤ cwε for a
certain regular triangle T of thickness w.

Lassak proved that on the sphere, for w > π
2 , reduced bodies and bodies of

constant width are the same. In this case, we have the following inequality
with an optimal stability result as well.

Theorem (Isominwidth stability in S2S2S2 for w > π
2

w > π
2

w > π
2

[4])

Among convex bodies in S2 with thickness w ∈
(π
2 , π

)
, the area is minimal

if and only if the body is congruent to U◦
π−w, where Uπ−w is a Reuleaux

triangle of width w − π
2 . Equality holds if and only if K is congruent to

U◦
π−w. Also, if K ⊂ S2 is a convex body of constant width w ∈

(π
2 , π

)
and

ε > 0 such that VS2(K) ≤ VS2(U◦
π−w) + ε. Then, there exists a Reuleaux

triangle U ⊂ S2 of width π − w, such that
δS2

(
K,U◦) ≤ cwε

for some constant cw > 0 depending only on w.

However, in the hyperbolic spaces, there is no minimal volume for a fixed
thickness in any dimension.

Theorem [4]
Let w > 0 be a fixed positive number. Then,

inf {VHn (K) : K ⊂ Hn convex body, w (K) ≥ w} = 0.
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Figure: A convex disc in H2 with “large” thickness and “small” area

However, among h-convex bodies in the hyperbolic plane, we can find a
unique convex body (up to isometries) minimizing the area, if the thickness
is fixed. A convex body K ⊂ Hn is called h-convex, if for any pair of points
x, y ∈ K, all connecting hypercyclic arcs are in K (or equivalently, K is an
intersection of horoballs). For a hyperbolic regular triangle T , we define the
horospherical Reuleaux triangle Rw as the h-convex hull of T , where w is the
thickness of Rw.
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Figure: The horocyclic Reuleaux triangle Rw

Theorem (h-convex isominwidth inequality [4])
For a fixed minimal width w > 0, the horocyclic Reuleaux triangle Rw is
the unique convex body with the smallest area among h-convex bodies in
H2 up to isometries.

Main ideas behind the results
The key tool for proving the isominwidth problem and its stability on the
sphere for thickness w ∈

(π
2 , π

)
, which coincides with the Blaschke–Lebesgue

problem for width w, is the following result.

Theorem (Reverse isodiametric stability [5])
Among bodies of constant width w in M2, the Reuleaux triangle Uw of
diameter w is the unique body with minimal area. Also, if K ⊂ M2 is of
constant width w such that VM2 (K) ≤ VM2 (Uw) + ε, then

δM2 (K,U) ≤ θε

for some positive constant θ and U congruent to Uw.

For the stability, we also use the following lemma by Glasauer [6]:

Lemma [6]
Let K,L ⊂ S2 be convex bodies such that δS2 (K,L) < π

2 . Then,
δS2 (K,L) = δS2

(
K◦, L◦) .

For the stability in the Euclidean plane, and also in S2 for w < π
2 , we first need

to revisit the main ideas of the proof of Pál’s inequality [7, 1]. The following
lemma is by Blaschke [2] in R2, and in S2 by Bezdek and Blekherman.

Lemma (Blaschke) [2, 1]
Let K ⊂ M2 be a convex body of thickness w > 0 (in the case M2 = S2

we also assume w ≤ π
2). Let Tw ⊂ M2 be a regular triangle of thickness

w. Then,
r(Tw) ≤ r(K)

with equality if and only if K is a congruent copy of Tw.

We note that in the hyperbolic space there is no Blaschke lemma, as the first
figure shows. However, the following h-convex version holds.

Lemma [4]
Let K ⊂ H2 be an h-convex body of thickness w > 0. Then,

r(Rw) ≤ r(K)

with equality if and only if K is a congruent copy of Rw.

If K is different from both the circular disk and the regular triangle Tw, then
we can find a spiky disk in K with three congruent, non-overlapping spikes,
similarly to the case shown in the following figure.
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Figure: The symmetric “cap-domain” Cw (ϱ)

Then, we can show that the area of the cap-domain increases in the differ-
ence η of the inradius and the inradius of the regular triangle. One can use
a similar argument for the h-convex case. As for the stability, we first find
a suitable copy of Tw. Then, we can bound the distance of K and the cap-
domain contained in it, then the distance of the cap-domain in K and the
symmetric one in Figure 3, finally we estimate δM2 (Cw (ϱ) , Tw).
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