SHARP QUANTITATIVE STABILITY OF THE BRUNN-MINKOWSKI INEQUALITY
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Introduction

The Brunn-Minkowski inequality states that for
bounded measurable sets A and B in R? of equal
volume and ¢ € (0,1/2], we have

A+ (1—t)B| > |A|

Equality holds exactly if A = B is convex (up to a
zero-set). The stability question asks if A and B are
close to achieving equality, how close A and B are
to each other and to being convex. Hence, we’re
looking for quantitative relations between ¢, v, and
w, defined as follows.
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Example 1: Quadratic Stability

A=10,1] x[0,1+ ¢ tA+ (1 —t)B
= [0,1+ (1 —t)¢]
€ %[0, 1 4 te|

x 10, 1]

In this example,
o~ |[tA+ (1 —1t)B| — |A]
= (14te)(14 (1 —t)e) — (1 +¢€) =~ te*, and
wr|co(AUB)\ A
= (14+2c+€/2)—(14+¢€) ~e
Hence;

W =~ —.
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Theorem 1 Foralld e N andt € (0,1/2], there are
ca, Agr > 0 such that the following holds. Assume
0 €10,Aq,] and let A, B C R? be measurable sets
with equal volume satisfying

tA+ (1 —1t)B| = (1+6)|A.

Then, up to translation, there is a convex set
K D AU B such that

5
K\ Al+|K\ B| < cd\[gyA\.

Theorem 2 Under the same assumptions, we
moreover have

[co(A)\ A| + [co(B)\ B| < t~5|A|.

)
w < Cd\/; and v < Y.

Hence,

Steps of the Proof of Theorem 1

1. By Theorem 2 and the Bonus Result, it suffices to
show that after some translation

AAB| < cgr/3 /2| Al
2. We may assume for some convex K C R;
B(o,1/100) C 0.99K C A, B C K C B(o,100).

3. Partition into cones so narrow that they register the
atomic structure of A and B (see Proposition 3)
and reduce to the stability problem inside each
cone.

4.In acone C, if mingcpe |(ANC)Az+ (BNC)|is
small, thensois |(ANC)A(B N C)| (using that
ANC and BN are almost convex).

5. The narrowness of the cones gives them an
approximately two-dimensional structure.

Cones

Proposition 3 Consider A, B c R? with |A| = | B],
then (up to translation) there exists a partition C of R*
into convex cones C' with apex at the origin so that:

|CNA|l=|CnNnB|forall C eC,

> e tANC)+ (1 —-t)(BNC)| < [tA+ (1 —1)B],

(' Is narrow in all but at most one direction for
almost all C' € C, and

(' Is essentially the convex hull of few lines for
almost all C € C.
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Example 2: Linear stability

A=co(A)=[0,1]" B=[0,1"U{(1+¢0,...,0)}

1 €
tA+ (1 —1)B =[0,1]"U [1,1+ (1 —t)¢] x [0,¢]"

In this example,
§=[tA+ (1 —t)B] —|A| =t'(1 — t)e, and
v=]co(A)\ Al + |co(B)\ B| =0+ ¢€/d.

Hence;
Y = Qd(td_15).

Ideas of the Proof of Theorem 2

We consider the case co(A) = co(xy, ..., x4) IS a
simplex and show that |co(A) \ A| = Og.(9).
1. Note that | co(A)| < (1 + €;)|A| (by weak stability).
2.Find v € A central in co(A) so that:
* max; |vx;| < 0.9max; ; |z;x;|, and
eletting A, := ANco(xg,...,xT; 1,0, Tis1,...,Tq),
then | co(A4;)| > 2<d1+1)\ co(A)].
3. Find a partition B = By LI - - - U B, so that
|A;| = |B;|, and
*|(tA; + (1 —1)B;) N (tA; + (1 —t)B;)| = 0.
4. Note that > . |co(A;) \ A;| =|co(A) \ A| and
Yo tA+ (1 —t)B;)| — |A| < [tA+ (1 —1)B| — |A],
so that we can iterate in each subsimplex.
5. lterate (keep finding central points and
subsimplices) as long as | co(A;)| < (1 + €4)| A4l
6. Distinguish three classes of simplices co(A4;), all
of which satisfy > .| co(4;) \ Ai] < O4.(0)|A|:
« Low density: | co(A;)| > (1 + €7)|As], these have
arge doubling.
 High density, small radius: | co(A;)| < (14 ¢€4)| A
and max{|zy| : x,y € co(4;)} < p, these lie
close to the boundary of the atoms of A.
 High density, big radius: |co(A4;)| < (1 + €;)| A
and max{|xy| : x,y € co(4;)} > p, these have
vanishing combined volume.
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