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Introduction

This is a joint work with Grzegorz Lewicki. The poster is based on the paper:

e T. Kobos, G. Lewicki, On the dimension of the set of minimal projections,
Journal of Mathematical Analysis and Applications (2023).

The paper is available also on arXiv. I refer there for the proofs, all the details
and the references.

If X is a normed space over K (where K = R or K = C) and Y C X is its
proper linear subspace, then by projection from X to Y we shall mean a bounded
linear operator P : X — Y such that P|y = Idy. By P(X,Y) we denote the set
of all projections from X onto Y. The relative projection constant of Y is defined
as

MY, X)) =inf{||P| : P € P(X,Y)}.
Moreover, if a projection P : X — Y satisfies ||P|| = A(Y, X) then P is called
a minimal projection. The set of all minimal projections will be denoted by
Puin(X,Y). By Bx and Sy we will always denote the unit ball and the unit
sphere of X, respectively.

Projection is one of the fundamental concepts of the functional analysis and
minimal projections have been studied extensively for many years. The following
questions are classical, when considered for some specific normed spaces Y C X:

(1) Determine A(Y, X).

(2) Determine a minimal projection Py : X — Y, that is some projection F
satisfying || Py|| = A\(Y, X).

(3) Determine if such projection P, is unique.

One famous example is Lozinski Theorem about the minimality of the classical
Fourier projection. The minimality of Fourier projection was proved by Lozinski in
1948, but it took another 20 years to establish, that it is in fact, the unique minimal
projection. It was proved by Cheney, Hobby, Morris, Schurer and Wulbert. This
shows that, generally speaking, even if the second question is settled, the third
one can still provide an additional and significant challenge. The main goal of our
investigation is to consider the third question, but in a much broader sense than
traditionally taken.



An affine dimension of the set of
minimal projections

We start with a simple observation that the set Py (X,Y) is a convex set.
Indeed, if P;, Py € Ppin(X,Y), then for any ¢ € [0, 1] we have
[tPr+ (1 =) Py)|| < ]| Pl + (1 = )| Bof| = tA(Y, X) + (1 = )A(Y, X) = A(Y, X).
On the other hand, the operator: tP; + (1 — t) P, is also a projection and hence
[tP1+ (1 =) P[] = A(Y, X).
Thus |[tP1+(1—1)P)|| = A(Y, X) and in consequence t P+ (1 —t) Py € Ppin(X,Y).

Because the set of minimal projections is a convex subset of a space L(X,Y)
of all linear operators from X to Y, we can study it in any way that convex sets
are usually studied. In particular, it is natural to consider its affine dimension —
that is, the minimal possible dimension of an affine subspace containing the set
Prin (X, Y). We will denote this dimension simply as dim Puin(X,Y). We will
stick only to the real finite-dimensional setting.

Equivalently, the dimension of the set Ppuin(X,Y') is the largest d, for which one
can find linearly independent operators Li, Lo, ..., Lg € Ly(X,Y) and a projec-
tion Py € P(X,Y) such that:

Po,P0+L1,...,P0+LdEpmin(X,Y),

where the subspace Ly (X,Y) C L£(X,Y) consists of all linear operators T : X —
Y satisfying T'|y = 0.
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Estimates of the dimension of the set
of minimal projections

Our main goal is to say something about the dimension of dim P, (X,Y) in
terms of the dimensions of X and Y. An old theorem due to Odyniec can be con-
sidered as a starting point of our investigation. It states that if Y C X, dim X = 3,
dimY =2 and A(Y, X) > 1 (Y is not a 1-complemented subspace), then the min-
imal projection P : X — Y is unique. Or equivalently dim Py, (X,Y) = 0.

We should note that for dim X = 3 and dimY = 2 it is immediate from purely
algebraic reasons that dim P, (X,Y) < 2. Theorem of Odyniec shows that under
some very general assumption (that Y is not 1-complemented in X) it is possible
to improve this bound by 2. This is a motivation for studying the dimension of
the set of minimal projections in a more systematic way.

We have the following broad generalization of Theorem of Odyniec:

Theorem 1. Suppose that Y C X, dim X =n,dimY =k, where 1 <k <n—1.
Then
(1) dim Ppin(X,Y) < k(n — k).
(2) If MY, X) > 1, then dim P (X, Y) < k(n — k) — 2.

Moreover, both estimates are optimal.

Thus, the second estimate is a broad generalization of the theorem of Odyniec,
which corresponds to the case of n = 3 and k£ = 2. We note that the first estimate
is immediate from the fact that Ly (X,Y) = k(n—k). Tis bound can be improved
by 2 if Y is not 1-complemented (the second estimate).

To prove that the estimate (1) is the best possible, it is enough to consider
X = /(7 and

Y ={((z1,22,...,2,) €R" 1y =0for 1 <i<n—k}.

It can be verified that for such k-dimensional subspace Y we have A\(Y,(}) = 1
and dim Pin (X, Y) = k(n — k).
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Estimates of the dimension of the set
of minimal projections

The second estimate follows from the application of the Chalmers-Metcalf oper-
ator. Please refer to the full version of the paper on the arXiv if you are interested
in details. Here we provide only example of X and Y, for which the bound in
(2) is attained. Interestingly, the construction is a little bit more complicated in
this case and the norm depends on k. Clearly, there is no need to consider the
case k = 1, as 1-dimensional subspaces are always 1-complemented by the Hahn-
Banach Theorem. Therefore, we assume that 2 < k < n —1 and we define a norm

| ]| in R™ as
n—k+2
||IH = max{ Z |‘T1’7 ‘xnfk+3|7 ER) |xn|} .
i=1
Thus the unit ball of || - || is a certain Cartesian product of the hypercube and
the cross-polytope of suitable dimensions. In the case k = 2 we get just a || - ||;

norm. Now we define also a k-dimensional subspace Y C R" as
Y={2eR" : s5+xy+23=0, z;, =0for 4 <i<n-—Fk+2}
It can be proved that A(Y, X) = 3 and dim Puin(X,Y) = k(n — k) — 2.



The hyperplane case

In the hyperplane case k = n — 1 we can be more precise. In this case the
estimates of Theorem 1 read as:

(1) 0 <dimPpin(X,Y)<n-—-1
(2) 0 < dim Poin (X, V) < n —3if AV, X) > 1.

Moreover, we already know these upper bounds can be achieved. Our next
theorem gives more precise result, stating that in fact all integers in these ranges
can be realized as the dimension of Py (X, Y).

Theorem 2. Let 0 < m < n — 1 be an integer. Then, there exist real normed
spaces Y C X such that dim X = n, dimY = n — 1 and dim Py (X, Y) = m.
Moreover, if 0 < m < n — 3, then it is possible to choose X and Y, so that we
have A(Y, X) > 1.

Again we do not present the full proof, but we simply give appropriate examples:

(1) For m =n — 1 we take X = (R, || - ||1) and Y = {z : 21 = 0} C R".
(2) For m =n — 2 we take X = (R",|| - ||) and Y = {z : 2, = 0} C R", where
the norm || - || is defined in this case as

|lz|| = max{|xi| + |x2| + ... + |Tno1], |20}
(3) For m < n —3 we take X = (R",|| - ||oc) and Y = {z : 21+ ... + 24 =

0} € R", where £k = n — m (then 3 < k < n). In this case we have
MY, X)=2-2>1

It would be interesting to know, if the Theorem 1 could be also improved in this
way for any dimension k. That is, if all the integers in the considered ranges can
be attained as dim Py, (X, Y).
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Some results in the polyhedral setting

Even if the estimates from Theorem 1 are optimal, one can ask to what degree
these estimates reflect what happens on a "regular basis”. This is a broad question,
to which we can provide a partial answer in a specific class of norms. We say that
the normed space X = (R", || - ||) is polyhedral, if the unit ball of X is a convex
polytope in R™, i.e. Bx = conv{txy,+xs,...,txyx} for some z1,z9,..., 25 €
R™. The importance of polyhedral normed spaces is a direct consequence of the
importance of the class of convex polytopes when considered as a subset of all
convex bodies. It turns out, estimates of Theorem 1 can be significantly improved
for polyhedral normed spaces and almost all subspaces Y.

Theorem 3. Let X be an n-dimensional polyhedral normed space. Then for an
open and dense subset of k-dimensional linear subspaces Y C X we have

dim Poin(X,Y) < k(n—k) —n+ 1.

In particular, for £ = n — 1, we obtain the following corollary: hyperplane
projections are unique in the polyhedral norms for an open and dense set of hy-
perplanes. This generalizes some previously known results, which have dealt with
some particular norms. In these results one could easily observe, that a minimal
projection on a hyperplane is not unique only for some quite specific hyperplanes.
It is not clear however, if for 2 < k < n — 2 this estimate is optimal.

We note here that our investigation of the dimension of the set of minimal
projections has a surprising by-product related to the norming pairs of minimal
projections. If P : X — Y is a minimal projection, then any point xy € Sx such
that

1P (o)l = | Pl = A(Y, X)
is called a norming point for P. Furthermore, if xq is a norming point for P and
f € Sx~ is a functional satisfying

f(P(%)) = ”P(xo>|| = )\(Ya X),

then (z, f) € Sx X Sx« is called a norming pair for P. Norming points and
norming pairs of minimal projections were considered in the literature by different
authors, but the results are rather scarce. It is more or less intuitive, that mini-
mal projections should be characterized in some way by having a lot of norming
points/pairs (when compared with all linear projections). The following result,
concerned with the polyhedral norms, seems to be new. It gives a lower bound for
the number of norming pairs but only for some minimal projection. It should be
noted that the lower bound of n depends only on the dimension of X and not on
the dimension of k.

Theorem 4. Let X be an n-dimensional polyhedral normed space and let Y C X
be a k-dimensional subspace, where 1 < k < n—1. Then, there exists a projection
P € Puin(X,Y) with at least n norming pairs.



Concluding remarks

Clearly, there are a lot of questions that can be asked. We propose the following
three questions, naturally arising from the previous considerations.

Question 1. Is it true that dim P, (X,Y) can attain all integer values in the
ranges given by Theorem 1 (similarly like in Theorem 2 in the hyperplane case)?

The next two questions are related to Theorem 3.

Question 2. Is it true that in any n-dimensional normed space X, the hyperplane
projections are unique for some "large” set of hyperplanes?

It should be noted here, that for a general normed space X it should not be
expected that uniqueness will hold for an open and dense subset of hyperplanes,
like in Theorem 3. However, it could be possible that a minimal projection is not
unique only for a meagre set of hyperplanes, when we consider the topology of
Grassmanian Gr(n — 1,n). In this case, the answer to Question 2 is affirmative
for n = 3. However, this situation is rather exceptionally easy, as by Theorem
of Odyniec (or Theorem 1) the minimal projection is unique for every non 1-
complemented plane. Hence, one needs to deal only with the 1-complemented
subspaces, which are quite special. Additionally, if X is a strictly convex norme
space (of any dimension), then the minimal projection is unique onto arbitrary
hyperplane.

Question 3. Is the estimate of Theorem 3 optimal for 2 < k < n — 27

It could be possible that minimal projections are unique for a "large” set of
subspaces of any given dimension, similarly like in the hyperplane case, but here
the situation is far from being clear. Even in the case X = (2, the description of
minimal projections onto subspaces of codimension 2 is already quite complicated.
Personally, I would be very interested to know what happens in the case of four
dimensional polyhedral normed space X and its two-dimensional subspaces.

Thank you for your attention! I hope that you have learned something interest-
ing. If you have any suggestions, questions or remarks do not hesitate to contact
me. See you around!
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