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1 New Setting and Terminology
Let Mk,l(R) be the space of k×l matrices with real coefficients. We now identify Rnm with Mn,m(R),Rn with Mn,1(R)
and Rm with M1,m(R). Convenient notation:
1. Kk,lo for convex bodies in Mk,l(R) containing the origin

2. Kk,l(o) for convex bodies in Mk,l(R) containing the origin in their interiors

3. Sk,l for star bodies in Mk,l(R)

Let {e1,i}mi=1 be the canonical basis in M1,m(R). The orthogonal simplex in K1,m
o is then given by

∆m = conv {o1,m, e1,1, . . . , e1,m} .
If x ∈ Mn,m(R) is given by x = [x1 . . . xm], where each xi is a column vector with n-entries, then

x.(−∆m)t = conv
{
otn,1,−x1, . . . ,−xm

} ∼= conv1≤i≤m[o,−xi].
Thus,

ρΠ◦,mK(x)−1 = V (K[n− 1], x.(−∆m)t).

Intermission: Integral Formulae and Surface Area
A convex body K is uniquely defined by its support function hK(y) = supx∈K〈x, y〉.
Fact: every nonnegative, 1-homogeneous, convex function on the sphere is the support
function of a convex body. Firey’s Lp Minkowski summation: given p ≥ 1, convex
bodies K and L and α, β > 0, the convex body α ·K+pβ ·L is defined via the support
function

hα·K+pβ·L = (αhpK + βhpL)
1/p
.

When p = 1, this is αK + βL. The Lp mixed volumes are given by

Vp(K,L) :=
p

n
lim
ε→0

voln(K +p ε · L)− voln(K)

ε
.

In particular: V1(K,L) = V (K[n− 1], L).
The Gauss map nK(y) : ∂K → Sn−1 associates an element y in the boundary of K with its

outer unit normal. The surface area measure of K is a measure on Borel subsets of Sn−1 given by
σK(E) =

∫
n−1
K (E) du. The Lp surface area measure of K, p ≥ 1, is given by dσK,p(u) = h1−p

K (u)dσp(u).

Aleksandrov’s Lp integral formula, established by Lutwak, is precisely

Vp(K,L) =
1

n

∫
Sn−1

hL(u)pdσK,p(u).

Lutwak introduced the ith dual mixed volume for p ∈ R, K and L
star bodies in Rd:

Ṽ−p,d(K,L) =
1

d

∫
Sd−1

ρK(θ)d−pρL(θ)pdθ.

Dual mixed volumes satisfy the dual Lp Minkowski first inequality: for K,L ∈ Sd, p ≥ 1

vold(K)d+p vold(L)−p ≤ Ṽ−p,d(K,L)d,

with equality if, and only if, K and L are dilates.
Given ξ ∈ Sd−1, Steiner symmetrization rearranges K about ξ⊥ to construct the Steiner symmetral SξK, with the

property that vold(SξK) = vold(K). Fact: there exists a sequence of directions {ξj}∞j=1 ⊂ Sn−1 such that, if we define
S1K = Sξ1K,SjK = SξjSj−1K, then SjK → κ

−1/d
d vold(K)1/dBd

2 .
Fact: For u ∈ Sn−1 and K ∈ Kn,1, one has SuΠ◦K ⊆ Π◦SuK. Thus, Petty’s projection equality can be proven via
Steiner symmetrization.

The Centroid and Random Simplex inequalities
Given a star body L in Rn, its centroid body ΓL is the unique centrally symmetric convex body whose support
function is

hΓL(u) =
1

voln(L)

∫
L

|〈x, y〉|dy.

Petty’s projection inequality implies the Busemann-Petty centroid inequality, which says the functional L 7→
voln(ΓL) voln(L)−1 is minimized when L is a centered ellipsoid. The expected volume of CX̄ = conv1≤i≤n[o,Xi], a
random simplex of K is given by

EKn(voln(CX̄)) := voln(K)−n
∫
K

· · ·
∫
K

voln (conv1≤i≤n[o, xi]) dx1 . . . dxn.

By an observation of Petty, the right-hand side equals 2−n voln(ΓK). Thus, the Busemann-Petty centroid inequality
is equivalent to the Busemann random simplex inequality:

EKn(voln(CX̄)) voln(K)−1 ≥
(

voln−1(Bn−1
2 )

(n + 1) voln(Bn
2 )

)n
,

with equality if, and only if, K is a centered ellipsoid.

The Santaló inequality
Recall the dual of K is given by K◦ = {x : hK(x) ≤ 1}. The Santaló inequality, proven in a series of works by
Saint-Reymond, Petty, Santaló, and Blaschke, can be stated as:

voln(K) voln((K − s(K))◦) ≤ voln(K) voln((K − c(K))◦) ≤ voln(Bn
2 )2,

with equality throughout if, and only if, K is a centered ellipsoid, where s(K) = argminz∈int(K) vold((K − z)◦) and
c(K) :=

∫
K xdx is the center of mass of K. K is said to be in Santaló position if s(K) = o.

2 Generalized Higher-Order Bodies
Let p ≥ 1, m ∈ N, and fix Q ∈ K1,m

o .
1. Given K ∈ Kn,1o with the property that σK,p is a finite Borel measure on Sn−1 (e.g. K ∈ Kn,1(o) ), we define the

(Lp, Q)-polar projection body of K, Π◦Q,pK via

ρΠ◦Q,pK
(x)−p =

∫
Sn−1

hQ(vt.x)pdσK,p(v), x ∈ Mn,m(R).

2. Using that hQ(vt.x) = hx.Qt(v), we obtain ρΠ◦Q,pK
(x)−p = nVp(K, x.Q

t).

3. Given a compact set L ⊂ Mn,m(R) with positive volume, we define the (Lp, Q)-centroid body of L, ΓQ,pL, to be
the convex body in Mn,1(R) with the support function

hΓQ,pL(v)p =
1

volnm(L)

∫
L

hQ(vt.x)pdx.

The following lemma also serves as an alternative definition of ΓQ,pL.
Lemma 1. Fix p ≥ 1 and K ∈ Kn,1o such that σK,p is a finite Borel measure on Sn−1. Then, for every Q ∈ K1,m

o and
L ∈ Sn,m, we have

Ṽ−p,nm(L,Π◦Q,pK) =
(nm + p) volnm(L)

m
Vp,n(K,ΓQ,pL).

Figure 1: wn(ΓQ,pL) =
EL(wn(CX̄)) Points
chosen independently:
L = {(x1, x2, x3) ∈
(R2)3 : |x1| ≤ 10}

In 1999, McMullen introduced the fibre combination of convex bodies. In
2016, Bianchi, Gardner and Gronchi further generalized the concept of fibre com-
bination and constructed a generalization of Steiner symmetrization. We isolate a
particular case of this framework as the natural analogue of Steiner symmetriza-
tion in the higher-order setting.
Definition 2. Fix m,n ∈ N. For v ∈ Sn−1, consider the m-dimensional space
[v] := {v.t : t ∈ M1,m(R)} ⊆ Mn,m(R) and let V (v) be its orthogonal comple-
ment, this is

V (v) = {x ∈ Mn,m(R) : vt.x = o ∈ M1,m(R)}.

Let L ⊆ Mn,m(R) be a compact set with non-empty interior. We define the mth
higher-order Steiner symmetral of L with respect to v

S̄vL =

{
y + v.

t− s
2
∈ Mn,m(R) : y ∈ V (v), t, s ∈ M1,m(R), (y + v.t), (y + v.s) ∈ L

}
.

It was shown by Ulivelli that, for L ∈ Kn,mo , volnm(L) ≤ volnm(S̄vL). The next
lemma is used in generalizing Petty’s inequality.
Lemma 3. Fix v ∈ Sn−1, Q ∈ K1,m

o , and p ≥ 1. Given K ∈ Kn,1o such that σK,p
is a finite Borel measure on Sn−1 (e.g. K ∈ Kn,1(o) ), one has

S̄vΠ
◦
Q,pK ⊆ Π◦Q,pSvK.

Inequalities
Theorem 4. Let m ∈ N, p ≥ 1 and Q ∈ K1,m

o .
Generalized Petty Projection inequality: for any K ∈ Kn,1(o) one has

volnm(Π◦Q,pK) voln(K)
nm
p −m ≤ volnm(Π◦Q,pB

n
2 ) volnm(Bn

2 )
nm
p −m.

If p = 1, then there is equality above if, and only if, K is an ellipsoid; if p > 1,
then there is equality above if, and only if, K is a centered ellipsoid.

Generalized Busemann-Petty Centroid inequality: Let L ⊂ Mn,m(R) be a com-
pact domain with positive volume. Then

voln(ΓQ,pL)

volnm(L)1/m
≥

voln(ΓQ,pΠ
◦
Q,pB

n
2 )

volnm(Π◦Q,pB
n
2 )1/m

,

with equality if, and only if L = Π◦Q,pE for a centered ellipsoid E ∈ Kn,1(o) .

Theorem 4 generalizes the results by Lutwak, Yang and Zhang, who did the case when Q = [−1, 1], and Haberl and
Schuster, who finished the m = 1 case. This theorem also holds when sending p→∞. Fact: ΓQ,pΠ

◦
Q,pB

n
2 → Bn

2 for
every Q ∈ K1,m

o . We list as a corollary when Q = (−∆m) and p = 1, which is Schneider’s setting. We note that

ρΠ◦,mBn2 (θ̄)−1 = n voln(Bn
2 )wn(Cθ̄).

Figure 2: n = 2. A
typical Cθ̄ as θ̄ is chosen
randomly from Snm−1

Consider the simple case when n = m = 2. Then, for θ̄ = (θ1, θ2) ∈ S3:

ρΠ◦,2B2
2
((θ1, θ2))−1 = vol1(∂ conv([o, θ1], [o, θ2])) = |θ1| + |θ2| + |θ1 − θ2|,

where θ1, θ2 ∈ R2 are such that |θ1|2 + |θ2|2 = 1.

Corollary 5. Let m ∈ N be fixed.

Petty’s projection inequality for higher-order projection bodies: For allK ∈ Kn,

voln(K)nm−m volnm(Π◦,mK) ≤ voln(Bn
2 )nm−m volnm(Π◦,mBn

2 ),

with equality if, and only if, K is an ellipsoid.
Busemann-Petty inequality for higher-order centroid bodies: For all L ∈ Snm,

voln(ΓmL)

volnm(L)1/m
≥ voln(ΓmΠ◦,mBn

2 )

volnm(Π◦,mBn
2 )1/m

,

with equality if, and only if, L = Π◦,mE for any full-dimensional ellipsoid E.

Figure 3: wn(ΓQ,pL) =
EL(wn(CX̄)) points
chosen dependently:
L = {(x1, x2, x3) ∈
(R2)3 : |x1| ≤
10 and maxi 〈xi, e1〉 −
mini 〈xi, e1〉 ≤ 1}

Santaló inequalities
It will be convenient to write Γ◦Q,pL = (ΓQ,pL)◦. For a compact domain
L ⊂ Mn,m(R) with positive volume, we define its polar with respect toQ ∈ K1,m

o :
Γ◦Q,∞L := limp→∞(ΓQ,pL)◦ = (ΓQ,∞L)◦. If ξ ∈ Γ◦Q,∞L, then maxx∈L hQ(ξt.x) ≤
1. We can view the map L → Γ◦Q,∞L as a type of duality; it follows from the
definition that it is order-reversing. Consider when Q = [0, 1] and L ∈ Kn,1(o) .
Then, for every ξ ∈ Sn−1 one has

hΓ[0,1],∞L(ξ) = max
x∈L
〈ξ, x〉+ = hL(ξ).

Consequently, for L ∈ Kn,1(o) , Γ[0,1],∞L = L.

Theorem 6 (Higher-order Santaló inequality). Fix Q ∈ K1,m
o . Consider a com-

pact domain L ⊂ Mn,m(R) with positive volume. Then, for p ≥ 1:

volnm(L)
1
m voln((ΓQ,pL− s(ΓQ,pL))◦) ≤ voln(Bn

2 )2
volnm(Π◦Q,pB

n
2 )

1
m

voln(ΓQ,pΠ◦Q,pB
n
2 )
.

In particular, by sending p→∞:

volnm(L)
1
m voln((ΓQ,∞L− s(ΓQ,∞L))◦) ≤ voln(Bn

2 ) volnm(Π◦Q,∞B
n
2 )

1
m .

For an example of Theorem 6 that uses the higher-order structure of the results,
suppose Q = [0, 1]m and L ∈ Kn,m(o) . Then, by writing Rn

i for the ith copy of
Mn,1(R) ∼= Rn in the decomposition of Mn,m(R) ∼= Rnm into m independent
products of Rn, one obtains, if s(Γ[0,1]m,∞L) = o,

volnm(L)
1
m voln

(
m⋂
i=1

(
PRniL

)◦) ≤ voln(Bn
2 ) volnm(Π◦Q,∞B

n
2 )

1
m .

The Random Simplex inequality in Schnei-
der’s Setting
Proposition 7. For L ⊂ Rnm a compact set with positive volume, K ∈ Kn,m, and
x̄ ∈ Rnm one has

V (K[n− 1],ΓmL)=
1

volnm(L)

∫
L

V (K[n− 1], C−x̄)dx̄=EL(V (K[n− 1], C−X̄)).

Using Proposition 7, we establish the following extension of the random simplex
inequality.
Theorem 8. The functional

(K,L) ∈ Kn,1o × Sn,m 7→ volnm(L)−
1
nm voln(K)−

n−1
n EL(V (K[n− 1], CX̄))

is uniquely minimized when K is an ellipsoid and L = λΠ◦,mK for some λ > 0.
A special case of the above theorem is that the functional

volnm(L)−
1
nmEL(wn(CX̄)) = volnm(L)−

nm+1
nm

∫
L

wn(Cx̄)dx̄

is minimized for L = Π◦,mBn
2 over Sn,m.


