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Introduction

Let M™ be either the Euclidean space R", hyperbolic space H" or spherical
space S™ for n > 2. We write V4 » to denote the n-dimensional Lebesgue
measure on M", and daqn(x,y) to denote the geodesic distance between
x,y € M"™. We use jpq» to denote the Hausdortf distance in M™.

For a convex body K C M", we use the notation w (K) for the minimal width
(or thickness) of K, where the width function depends on the space M™. For
a supporting hyperplane H, the width of K at H, denoted as w (K, H), is
the distance of H and the furthest (ultra)parallel supporting hyperplane to
H in R™ and in H™. On the sphere, w (K, H) is the smallest possible angle
enclosed by H and another supporting hyperplane to K. These width func-
tions are all monotone, continuous, and their maximal value is the diameter
of K, denoted by diama » K [3]. We call a convex body K C M™" reduced, if
for any convex body Ko C K, w (Kp) < w (K).

The isominwidth problem

In 1921, P4l proved for convex bodies in R?, that for a fixed thickness w, the
area is minimal if and only if the convex body is a regular triangle [ 7]. Clearly,
the optimizer of this problem is reduced. In the spherical case, K. Bezdek and
Blekherman proved that for w < 3, area is again minimized by the regular
triangle [1]. In these cases, we have the following optimal stability result.

Let M? denote one of R? and S?. Let T}, C M? denote a regular triangle
of thickness w > 0 (w < F, if M? = §2). There exists constants cy, ey > 0
depending only on w such that for any € € [0,&,) and any convex body
K C M? with V2(K) < Vy2(Tw) + € we have §,2(K,T) < cype for a
certain regular triangle T of thickness w.

Lassak proved that on the sphere, for w > 3, reduced bodies and bodies of
constant width are the same. In this case, we have the following inequality
with an optimal stability result as well.

Among convex bodies in S with thickness w € (%, «), the area is minimal
if and only if the body is congruent to U__,,, where U,_,, is a Reuleaux
triangle of width w — 5. Equality holds if and only if K is congruent to

U2_,,- Also, if K C §?is a convex body of constant width w € (3, n) and
e > 0 such that Vg (K) < Vo (U2 _, ) + €. Then, there exists a Reuleaux

triangle U C S? of width = — w, such that
552 (K, UO) S Cwe
for some constant ¢, > 0 depending only on w.

However, in the hyperbolic spaces, there is no minimal volume for a fixed
thickness in any dimension.

Let w > 0 be a fixed positive number. Then,
inf {Vygn (K) : K C H" convex body, w (K) > w} = 0.

Figure: A convex disc in H? with “large” thickness and “small” area

However, among h-convex bodies in the hyperbolic plane, we can find a
unique convex body (up to isometries) minimizing the area, if the thickness
is fixed. A convex body K C H" is called h-convex, if for any pair of points
x,y € K, all connecting hypercyclic arcs are in K (or equivalently, K is an
intersection of horoballs). For a hyperbolic regular triangle T, we define the
horospherical Reuleaux triangle R,, as the h-convex hull of T', where w is the
thickness of Ry,.

Figure: The horocyclic Reuleaux triangle R,

For a fixed minimal width w > 0, the horocyclic Reuleaux triangle R, is
the unique convex body with the smallest area among h-convex bodies in
H? up to isometries.

Main ideas behind the results

The key tool for proving the isominwidth problem and its stability on the
sphere for thickness w € (%, 7), which coincides with the Blaschke-Lebesgue
problem for width w, is the following result.

Theorem (Reverse isodiametric stability [5])

Among bodies of constant width w in M?, the Reuleaux triangle U,, of
diameter w is the unique body with minimal area. Also, if K C M2 is of
constant width w such that V2 (K) < V2 (Uw) + ¢, then

5M2 (K, U) S 95
for some positive constant 8 and U congruent to U,,.

For the stability, we also use the following lemma by Glasauer [6]:

Let K, L C S be convex bodies such that §¢2 (K, L) < 5. Then,
Sgo (K, L) = 8¢ (K°,L°).

For the stability in the Euclidean plane, and also in S? for w < 5, we first need
to revisit the main ideas of the proof of Pal’s inequality [7, 1]. The following
lemma is by Blaschke [2] in R?, and in S? by Bezdek and Blekherman.

Lemma (Blaschke) [2, 1]

Let K C M2 be a convex body of thickness w > 0 (in the case M2 = §2
we also assume w < 7). Let Ty, C M? be a regular triangle of thickness

w. Then,
r(Tyw) < r(K)

with equality if and only if K is a congruent copy of T,.

We note that in the hyperbolic space there is no Blaschke lemma, as the first
figure shows. However, the following h-convex version holds.

Lemma [4]

Let K C H? be an h-convex body of thickness w > 0. Then,
r(Ry) < r(K)
with equality if and only if K is a congruent copy of R,,.

If K is different from both the circular disk and the regular triangle T,,, then
we can find a spiky disk in K with three congruent, non-overlapping spikes,
similarly to the case shown in the following figure.

S2.3 S3,2

Figure: The symmetric “cap-domain” C,, (o)

Then, we can show that the area of the cap-domain increases in the differ-
ence n of the inradius and the inradius of the regular triangle. One can use
a similar argument for the h-convex case. As for the stability, we first find
a suitable copy of T,,. Then, we can bound the distance of K and the cap-
domain contained in it, then the distance of the cap-domain in K and the
symmetric one in Figure 3, finally we estimate 6,2 (Cw (0) , Tw).
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