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Message
• New way of understanding the volume product of a convex body as a regularising property of

diffusion flow (analytic perspective): hypercontractivity.
• Blaschke–Santaló inequality and Mahler’s conjecture are embedded into the Brascamp–Lieb theory

which concerns about inequalities for multilinear functional.
For instance,

Inverse Brascamp− Lieb inequality beyondBarthe−Wolff′s condition
⇓

Reverse hypercontractivity beyondNelson′s time

⇓
Blaschke− Santaló inequality.

• (A wealth of our viewpoint on convex geometry)
– New lower bounds of v(K) for K whose boundary is “well-curved”. ⇝ A quantitative result

to an observation by Stancu and Reisner–Schütt–Werner: if ∂K has a point at which the Gauss
curvature > 0 then v(K) ̸= local minimum.

– A monotonicity of the functional volume product along Fokker–Planck flow. ⇝ Flow mono-
tonicity proof of the Blaschke–Santaló inequality.

• (A wealth of our viewpoint on hypercontractivity and Brascamp–Lieb theory)
– Regularizing property of the flow can be improved if the input has symmetry (improvement of

hypercontractivity w.r.t Nelson’s time)
– Give an example of the inverse Brascamp–Lieb inequality due to Barthe–Wolff beyond their

non-degenerate condition.

Convex geometry
• Convex body K ∈ Rn⇝ Polar body of K: K◦ := {x ∈ Rn : supy∈K⟨x, y⟩ ≤ 1}.
• Volume product: v(K) := |K||K◦|⇝What is the maximum and minimum of v?
• (Upper bound: Blaschke–Santaló inequality)

max
K:Symmetric

v(K) = v(Bn
2 ).

Here Bn
p := {x = (x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi|p ≤ 1} for p ∈ [1,∞].

• (Lower bound: Mahler’s conjecture)

min
K

v(K) = v(∆n), min
K:Symmetric

v(K) = v(Bn
∞)?

Here ∆n denotes the non-degenerate simplex.
– When n = 2, the problem of symmetric and non-symmetric case are both solved by Mahler.
– When n = 3, the problem of symmetric case is recentrly solved by Iriyeh–Shibata. Short proof

by Fradelizi–Hubard–Meyer–Roldán-Pensado–Zvavitch.
– Otherwise the problem is open despite of several partial answers.

• A problem of the uniqueness of minimizer of the volume product:
– For the symmetric Mahler’s conjecture, the minimizer is known to be essentially unique when
n = 2, 3. However, when n ≥ 4, the minimizer is known to be non-unique! (Source of difficulty)

– For the non-symmetric Mahler’s conjecture, the minimizer is expected to be unique to the sim-
plex but this is also open problem except n = 2.

– Towards this problem, Stancu and Reisner–Schütt–Werner gave an observation: if ∂K has a point
at which the (generalized) Gauss curvature is positive then v(K) can NOT be a local minimum.

– In other words, the minimizer must have a flat boundary! Consistent with the intuition that v(K)
detects the roundness of K.

• Functional volume product: for a log-concave function f : Rn → [0,∞),

v(f ) :=
( ∫

Rn
f dx

)( ∫
Rn

f◦ dx
)

where

f◦ := inf
y∈Rn

e−⟨x,y⟩

f (y)
= e−(− log f )∗, ϕ∗(x) := sup

y∈Rn
⟨x, y⟩ − ϕ(y).

• For fK(x) = e−
1
2∥x∥

2
K where ∥x∥K := inf{r > 0 : x ∈ rK},∫

Rn
fK dx =

(2π)
n
2

|Bn
2 |

|K|,
(1
2
∥ · ∥2K

)∗
=

1

2
∥ · ∥2K◦

and so v(fK) coincides to v(K) up to constant.
In particular, v(γ) ↔ v(Bn

2 ): Gaussian is “functional Euclidean ball”.
• (Functional Blaschke–Santaló inequality)

Theorem 0.1. (Ball, Artstein-Avidan–Klartag–Milman, Lehec)
For any symmetric f : Rn → [0,∞),

v(f ) ≤ v(γ) = (2π)n.

The symmetric assumption can be weakened to
∫
Rn xf (x) dx = 0.

• (Functional Mahler’s conjecture)
Conjecture 0.2. (Fradelizi–Meyer)
For any log-concave function f ,

v(f ) ≥ v(f∗) = en, f∗(x) := e−(x1+x2+···+xn)1[−1,∞)n(x).

For any log-concave and symmetric function f ,

v(f ) ≥ v(f∗∗) = 4n, f∗∗(x) := e−(|x1|+|x2|+···+|xn|).

Diffusion flow: Ornstein–Uhlenbeck flow and Fokker–Planck flow
• (Ornstein–Uhlenbeck flow and Fokker–Planck flow) For f : Rn → [0,∞),

ut(x) = Ptf (x) :=

∫
Rn

f (e−tx +
√
1− e−2ty) dγ(y), (t, x) ∈ (0,∞)× Rn,

where dγ(x) := (2π)−n/2e−
1
2|x|

2
dx, solves the heat equation ∂tut = Lut := (∆−x·∇)ut, u0 = f.

Also wt(x) = P ∗
t f (x) solves ∂twt = L∗wt := (∆ + x · ∇ + n)wt, w0 = f.

• OU flow Pt regularizes an input function (possibly very rough). For instance f0 = δ ⇝ Ptδ = γβt
for appropriate βt > 0.

• This regularizing property is quantified by the following functional inequalities:
Theorem 0.3. (Nelson, Borell)
Let t > 0 and p, q ∈ R satisfy Nelson’s time condition: q−1

p−1 ≤ e2t.

– When p, q > 1, we have the forward hypercontractivity:∥∥Ptf∥∥Lq(γ) ≤ ∥f∥Lp(γ), ∀f : Rn → [0,∞).

– When −∞ < p, q < 1, we have the reverse hypercontractivity:∥∥Ptf∥∥Lq(γ) ≥ ∥f∥Lp(γ), ∀f : Rn → [0,∞).

– Moreover, Nelson’s time condition is best possible:

q − 1

p− 1
> e2t ⇒ sup

f

∥∥Ptf∥∥Lq(γ)/∥f∥Lp(γ) = +∞, inf
f

∥∥Ptf∥∥Lq(γ)/∥f∥Lp(γ) = 0.

Main results
New observation: the Brascamp–Lieb inequality⇝ functional volume product. For pt := 1− e−2t,

lim
t↓0

(∫
R2n

e
e−t

pt
⟨x1,x2⟩f1(x1)

1
ptf2(x2)

1
pt dx1dx2

)pt
→ sup

x1,x2
e⟨x1,x2⟩f1(x1)f2(x2) = sup

x1

f1(x1)

f◦2 (x)
.

Take f1 = f and f2 = f◦! This link is guided by the duality between BL and HC:∫
R2n

e−π⟨x,Qtx⟩
∏
i=1,2

fi(xi)
1
pt dx1dx2 = Ct

∥∥Pt[f 1
pt
]∥∥

Lqt(γ), Qt =
1

2π

(
0 −e−t

−e−t 0

)
,

for f1 = f · γ and f2 =
1∥∥Pt

[
f

1
pt
]∥∥qt

Lqt(γ)

Pt
[
f

1
pt
]qt · γ, where qt = p′t = 1− e2s < 0.

Claim 0.4. (N–Tsuji)
1. (reverse HC ⇒ BS ) Suppose for all small t > 0, there exists a constant BSt > 0 s.t.∥∥Ptf∥∥L−2t+O(t2)(γ)

≥ BS
1
pt
t ∥f∥Lpt(γ), pt := 2t +O(t2)

for all symmetric f . Then

sup
f :Symmetric

v(f ) ≤
(
lim
t↓0

BSt
)−1

v(γ).

2. (forward HC ⇒ Mahler ) Suppose for all small t > 0, there exists a constant ISt > 0 s.t.∥∥Ptf∥∥L−2t+O(t2)(γ)
≤ IS

1
pt
t ∥f∥Lpt(γ), pt := 2t +O(t2)

for al f s.t. f/γ: log-concave. Then

inf
f :log−concave

v(f ) ≥
(
lim
t↓0

ISt
)−1

v(γ).

3. Note that p = 2t + O(t2) and q = −2t + O(t2) breaks the Nelson’t time condition⇝ Importance
to go beyond Nelson’s time in hypercontractivity!

Theorem 0.5. (N–Tsuji)
Let κ ∈ (0, 1). Suppose a convex body K satisfies a curvature type condition

∇2(1
2
∥ · ∥2K

)
(x), ∇2(1

2
∥ · ∥2K◦

)
(x) ≥ κid, ∀x ∈ Sn−1.

Then
v(K) ≥

(
κe

1
2(1−κ2))nv(Bn

2 ).

In particular, if κ ≥ 0.423 then K satisfying the condition satisfies Mahler’s conjecture.

Theorem 0.6. (N–Tsuji)
Suppose 1− e2t ≤ q < 0 < p ≤ 1− e−2t. Then∥∥Ptf∥∥Lq(γ) ≥ ∥f∥Lp(γ), ∀f : Rn → [0,∞) s.t. Symmetric,

f

γ
: log − concave.

Moreover, 1− e2t ≤ q < 0 < p ≤ 1− e−2t is necessary.
This in particular implies Blaschke–Santaló inequality and provides an example of inverse

Brascamp–Lieb inequality without Barthe–Wolff’s non-degenerate condition.
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