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2l The mean distance between two random points uniformly selected from the interior of a given '—|‘ 3

%j convex polyhedron is derived for various polyhedra using a modification of the Crofton's reduction o
B technique. 1t is shown that the method can be easily extended to find the exact value of the mean §

. “JE distance in any convex polyhedra in general. \'/_'_
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N Let K € R> be a polyhedron (not necessarily convex), from which we select two random points X, Y %

_[3:0 uniformly. Denote L = |XY/| the distance between them and I_](fK) = [E [LP]its p-th statistical moment. /Q o

5 Even-power moments are trivial to compute. Prior to our findings, the value L'} has been known =8
g\;ﬁ in the exact form only for K being a ball!” or a cube!? (the so called Robbins constant). Are there ]E =
S g explicit closed form formulae for other polyhedra apart from a cube? 4
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) Let P(X,Y) be a random variable whose value scales by the factor of p with respect to a given =

© scaling point C. Suppose that the points X and Y are chosen randomly uniformly from the '::%

< domains A and B with unique dimensions aand b, respectively. Denote PAg=E[P|X € A,Y € B|. 3
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JE Then, if C lies in the intersection of the affine hulls of A and B, the technique of Crofton reduction @

2 provides us with the formula below. In our problem, we simply put P = LP. Note that whenever it @ 10

g is unambiguous, we often write Py, instead of Pagp . o |2
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> 2 If A and B are nonetheless parallel (the I%, @ X
8% intersection of their affine hulls is empty)  *%===== 10

: with separation h = |AB|, we use the following |

+;; overlap formula: X 2%
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% With help of polar coordinates, the problem of finding the mean length beween a point and a :

i paralelogram or between any nonparallel two line segments (which is equivalent with the former S
B by using translation argument) can be expressed in terms of elementary functions. N
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