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Projections and Approximation

Interplay of alternating projections and greedy approximation

Let H be Hilbert space. Given finitely many closed convex sets in H, iterating nearest
point projections onto them can find a point in the intersection of the sets. Given a
spanning subset D of H, the greedy algorithm can approximate a given point by linear
combinations of elements of . There Is a duality between the two schemes.

lterates of Projections Greedy Algorithm

K € Nfixed, e.g. K =5 D spanning subset of the sphere of 4
L1,Lo,..., L C H closed subspaces let g,11 € D maximize |(x,,, g)
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seguence of projections of elements of D
0
Goal: . Goal:
tind the projection £ % onto ,—; Lk; approximate x, by linear combinations of
i.e. show z,, — 0if (),_; Lr = {0}. elements of D: i.e. show z,, — 0.

INTERPLAY

e (Greedy algorithm converges, hence remotest projections converge as well.
Use D = (Ly U---UL%)NS(H).

e Alternating projections converge. They converge fastiff Y = L{ +- - -+ L is closed.
e (Greedy algorithm converges fast iff D does not fit in an arbitrarily thin plank.
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