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Background

K ∩ E

E ∈ A(n, q)

KWe have the classical Crofton formula for convex sets∫
A(n,q)

Vq−j(K ∩ E) µq(dE) = c0Vn−j(K) (1)

for n ∈ N, q ∈ {0, . . . , n}, j ≤ q and K ∈ Kn, see [1].
A rotational version is derived in [2],∫

G(n,k)

ϕL(K ∩ L) νk(dL) = Vn−j(K), K ∈ Kn,

where
ϕL(K ∩ L) = c1

∫
A(L,q)

d(o,E)n−kVq−j(K ∩ E)νLq (dE), (2)

and k ∈ {1, . . . , n − 1}, j ≤ k − 1 and q can be chosen in {j, . . . , k − 1}. Furthermore (2) does not
depend on q.

Our aim is to construct Crofton formulae where the integration is over G(L0, k) instead of
G(n, k) for a fixed L0 ∈ G(n, r).

Notation
Let n ∈ N, k ∈ {1, . . . , n} and r ∈ {0, . . . , k}.

Intrinsic volumes:
The intrinsic volumes Vi are functionals on
Kn := {A ⊆ Rn : A ̸= ∅, compact,convex}
defined by

λn(K + ϵBn) =

n∑
i=0

ϵn−iκn−iVi(K), K ∈ Kn.

Families of subspaces:
The family of affine k-dimensional flats of Rn

is denoted by A(n, k) and the Grassmannian of
k-dimensional linear subspaces by G(n, k).
For L ∈ G(n, k) we let A(L, q) be the family of
affine subspaces of dimension q ≤ k contained
in L and G(L0, k) be linear subspaces of
dimension k containing L0 ∈ G(n, r).

Invariant measures on subspaces:
The unique invariant probability measure on
G(n, k) is denoted by νk. An invariant measure
on A(n, k) is µk given by the relation∫

A(n,k)

f(E) µk(dE) =∫
G(n,k)

∫
L⊥

f(L+ x) λL⊥(dx) νk(dL)

for f ≥ 0 measurable and λL⊥ being the
Lebesgue measure on L⊥.
Likewise we let νL0

k and µL0

k denote invariant
measure on G(L0, k) and A(L0, k).

Subspace determinant:
For M ∈ G(n, q) and N ∈ G(n, r) such that
q + r ≤ n we let [M,N ] denote the subspace
determinant defined as the q + r dimensional
volume of the set

P =
{ q∑

i=1

αimi +
r∑

j=1

βjnj : 0≤αi≤1
0≤βj≤1

}
,

where (mi)
q
1 and (ni)

r
1 is an orthonormal basis

of M and N , respectively.

New rotational Crofton Formulae

L ∈ G(L0, k)

K ∩ L

L0 ∈ G(n, r)

K ∩ E E ∈ A(L, q)

Theorem 1
Let n, r, k ∈ N0 with r + 1 ≤ k ≤ n be given and fix a
subspace L0 ∈ G(n, r). Then, for j = 0, . . . , k − (r + 1) and
K ∈ Kn, we have∫

G(L0,k)

ϕL0

L,q(K ∩ L)νL0

k (dL) = Vn−j(K), (3)

where

ϕL0

L,q(K ∩ L) = c2

∫
A(L,q)

Vq−j(K ∩ E)
(
d(0, E)[span(E), L0]

)n−k

µL
q (dE). (4)

Here q can be chosen in {j, . . . , k − (r + 1)}. Furthermore (4) may depend on q.
Sketch of proof
We derive and use the Blaschke-Petkantschin formula∫

G(L0,k)

∫
A(L,q)

f(E)
(
d(0, E)[span(E), L0]

)n−k
µL
q (dE)νL0

k (dL)

= c3

∫
A(n,q)

f(E)µq(dE),

for f ≥ 0, and combine it with the classical Crofton formula (1).

The measurement function
Let the assumptions of Theorem 1 be satisfied
and fix q ∈ {j, . . . , k − (r + 1)}. When L ∈
G(L0, k) the following statements hold.

(i) φL0

L,q is independent of the choice of q.

(ii) We have

φL0
L,j(K

′) = c2

∫
G(L,j)

[M,L0]
n−k

∫
K′|M⊥

× d(z,M + L0)
n−k λM⊥ (dz) νLj (dM),

for all convex bodies K ′ ⊂ L.

(iii) If j = 0 (rotational integral for the vol-
ume) this simplifies to

φL0

L,q(K
′) =

ωn−r

ωk−r

∫
K′

d(x, L0)
n−k λL(dx),

for all convex bodies K ′ ⊂ L.

The integration process
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Figure 1: A plane L containing
L0 intersecting an ellipsoid.
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Figure 2: The intersection of L
and the ellipsoid.

When n = 3, k = 2, r = 1 the
integration can be exemplified

1. First, intersect K with a
random plane containing
L0 (Figure 1).

2. View the intersection
plane as R2.

3. ϕL0

L,0(K ∩ L) is now pro-
portional to the mean dis-
tance to L0 of points in
K ∩ L. (Figure 2).
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