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1 New Setting and Terminology

Let M ;(R) be the space of k x | matrices with real coefficients. We now identify R"" with M,, ,,,(R), R" with M,, ;(R)
and R with M; ,,,(R). Convenient notation:

1. KX for convex bodies in My ;(R) containing the origin
2. IC](?) for convex bodies in My, ;(R) containing the origin in their interiors
3. §*! for star bodies in My ;(R)
Let {e1,;}™, be the canonical basis in My ,,(R). The orthogonal simplex in K™ is then given by
Ay, =conv{o)m, €11, ,E1m} -
If . € M, ,n(R) is given by z = |x; ... x,,], where each z; is a column vector with n-entries, then

z.(—A,,)" = conv {0 —21, ..., —xm} = convi<i<m|o, —T;].

n,1»

Thus,
prem (1) = V(K[n — 1], 2.(=An)").

Intermission: Integral Formulae and Surface Area

A convex body K is uniquely defined by its support function hx(y) = sup,c{(x, y).
Fact: every nonnegative, 1-homogeneous, convex function on the sphere is the support
function of a convex body. Firey’s L” Minkowski summation: given p > 1, convex
bodies K and L and o, 8 > 0, the convex body - KK 4, 3 - L 1s defined via the support

function
hQ.K+p5.L = (Oéh];( + Bhg)l/p.
/ When p = 1, this is a K + L. The L” mixed volumes are given by
(K - L) — vol,,(K
V(K L) = L i YOl Ep € B) = vOlu (K
N e—0 €
In particular: Vi(K, L) =V (K|n — 1], L).

The Gauss map ni(y) : OK — S"! associates an element y in the boundary of K with its
outer unit normal. The surface area measure of K is a measure on Borel subsets of S""! given by
= fn[—(l(E) du. The LP surface area measure of K, p > 1, is given by dog,(u) = hi "(u)do,(u).

Aleksandrov’s L? integral formula, established by Lutwak, is precisely

V(K L) = /S  hi()Pdo (u).

Lutwak introduced the ith dual mixed volume for p € R, K and L

3 star bodies in RY:

~ 1
VK1) =5 [ x0T pulopas

Dual mixed volumes satisfy the dual L? Minkowski first inequality: for K, L € 8%, p > 1
VOld(K>d+p VOld(L> L V pd(K L)

with equality 1f, and only if, K and L are dilates.
Given ¢ € S, Steiner symmetrization rearranges K about £+ to construct the Steiner symmetral Se <, with the
property that voly(S¢ i) = volg(K'). Fact: there exists a sequence of directions {§;}7%; C S"~! such that, if we define

SiIK =S¢ K, S;K = S, Sj-1 K, then S;K — ;"' voly(K)Y/BY.
Fact: Foru € S" tand K € K™!, one has S, H K C 1I°5,K. Thus, Petty’s projection equality can be proven via
Steiner symmetrization.

The Centroid and Random Simplex inequalities

Given a star body L in R", its centroid body I'L is the unique centrally symmetric convex body whose support
function is

hrr(u

Petty’s projection inequality implies the Busemann Petty centmld inequality, which says the functional . —
vol,(I"'L) vol,(L)~! is minimized when L is a centered ellipsoid. The expected volume of C'y = convi<;<,|o, Xj], a

random simplex of K 1s given by
/ / vol, (convi<i<plo, x;]) dxy . .. dx,

By an observation of Petty, the right-hand side equals 27" vol,,(I'K'). Thus, the Busemann-Petty centroid inequality
is equivalent to the Busemann random simplex inequality:

EKn (VO]n(CX) = VOl

Een(vol(Cx)) vol,(K) ™" > (<nv iﬁiﬁﬂé)) |

with equality if, and only if, K is a centered ellipsoid.
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The Santalo inequality

Recall the dual of K is given by K° = {x : hg(x) < 1}. The Santalé inequality, proven in a series of works by
Saint-Reymond, Petty, Santalo, and Blaschke, can be stated as:

vol,(K) vol, (K — s(K))°) < vol,(K)vol,((K — ¢(K))°) < vol,(By)?,

with equality throughout if, and only if, K is a centered ellipsoid, where s(K') = argmin, ) vola((K — 2)°) and
¢(K) = [, wdx is the center of mass of K. K is said to be in Santalé position if s(X) = o.

2 Generalized Higher-Order Bodies

Letp>1,meN,and fix () € ICé’m.
1. Given K € K™! with the property that o, is a finite Borel measure on S" ! (e.g. K € ICZ;)I ), we define the
(L?, Q)-polar projection body of K, Iy, K via

pnap[((az)_p = /Sn—l ho(v'.x)Pdog ,(v), =€ M, (R).

2. Using that ho(v'.x) = h, ot(v), we obtain prg, (@) =nV,(K, r.Q)Y).

3. Given a compact set L C M, ,,,(R) with positive volume, we define the (L, ))-centroid body of L, ['g ,L, to be
the convex body in M,, ;(R) with the support function

1
h P = ho(v'.z)Pdz.
ro,L(v) V01nm<L)/L o(v'.x)Pdx

The following lemma also serves as an alternative definition of I'g L.

Lemma 1. Fix p > 1 and K € K™ such that o, is a finite Borel measure on S"~'. Then, for every Q € K™ and
L € 8™ we have

~ . (nm + p) voly, (L)
V_p)nm<L, HQ,pK) =

Vo (K. To,L).
m p,( Q,p)

In 1999, McMullen introduced the fibre combination of convex bodies. In
2016, Bianchi, Gardner and Gronchi further generalized the concept of fibre com-
bination and constructed a generalization of Steiner symmetrization. We isolate a
particular case of this framework as the natural analogue of Steiner symmetriza-
tion in the higher-order setting.

Figure 1: w,(I'g,L) =
Er(w,(Cx)) Points
chosen independently:
L = {<561,$2,563> c

. . L R?)% |z < 10
Definition 2. Fix m,n € N. For v € S"!, consider the m-dimensional space (R)” + || < 10}

] = A{vt:t € Mi,n(R)} € M,,,(R)and let V(v) be its orthogonal comple-
ment, this 1s

V(v) ={r € M u(R) : v'.x = 0 € My ,,(R)}.

Let L C M, ,,(R) be a compact set with non-empty interior. We define the mth

higher-order Steiner symmetral of L. with respect to v

t—s
2

S,L = {y + 0. e M, n(R):yeV(v),t,s € M1 n(R), (y+v.t), (y+v.s) € L} .

It was shown by Ulivelli that, for L € K™, vol,;,(L) < vol,,(S,L). The next
lemma 1s used 1n generalizing Petty’s inequality.

Lemma 3. Fixv € "1, Q € K™ and p > 1. Given K € K™ such that o,
is a finite Borel measure on S" ! (e.g. K € /CZ;; ), one has

S8 K C 118 S, K.

Inequalities

Theorem 4. Let m € N, p > 1 and Q € K}'™.
Generalized Petty Projection inequality: for any K € IC?“O’)l one has

VOl (119, K ) vol, (K) 7 ™" < w0l (115, BY) Vol (By) 7 ™

If p = 1, then there is equality above if, and only if, K is an ellipsoid; if p > 1,
then there is equality above if, and only if, K is a centered ellipsoid.

Generalized Busemann-Petty Centroid inequality: Let L C M, ,,,(R) be a com-
pact domain with positive volume. Then

vol, (g L) . vol, (T Il ,By)
VO (L)Y vl (113, By )L™

with equality if, and only if L = 11;) | E for a centered ellipsoid E € /CZ)’)1 :
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Theorem 4 generalizes the results by Lutwak, Yang and Zhang, who did the case when () = |—1, 1], and Haberl and
Schuster, who finished the m = 1 case. This theorem also holds when sending p — oo. Fact: I'g 11, By — By for
every (Q € K. We list as a corollary when Q = (—A,,) and p = 1, which is Schneider’s setting. We note that

pHo,mBg(é)_l = nvol,(By)w,(Cj).
Consider the simple case when n = m = 2. Then, for = (6, 0,) € S*:
pHo,QB%((Ql, 62»_1 — VOll(a CODV([O, (91], [O, (92])) = ‘91| + |92‘ + ‘91 — (92|,

where 01, 0, € R? are such that |0;|* + |05|* = 1.
Corollary 5. Let m € N be fixed.

Petty’s projection inequality for higher-order projection bodies: For all K € K",

vol, (K)™ " vol,, (IT7" K) < vol,(B5)™ " vol,, (11> BY),

with equality if, and only if, K is an ellipsoid.
Busemann-Petty inequality for higher-order centroid bodies: For all L € 8™,

Figure 2: n = 2. A
typical Cj as 6 is chosen
randomly from S

vol,(I"™L) o vol, (I 11°™ BY)
VOl (L)Y™ — voly,,, (TTo™ BY)1/m’

with equality if, and only if, L = 11> E for any full-dimensional ellipsoid L.

Santalo inequalities |
Figure 3: w,(I'g,L) =

Er(w,(Cg)) points

e}

It will be convenient to write I'y) L. = (T'g,L)°. For a compact domain

L C M, »(R) with positive volume, we define its polar with respect to Q € K- chosen  dependently:
09 oL = limy,o(Tg,pL)° = (Douel)®. If & € Ty L, then max,ey, ho(&'.z) < L " {<$17x27$3> S
1. We can view the map L. — 15 . L as a type of duality; it follows from the (R) | <

10 and max; <in, €1>

definition that it is order-reversing. Consider when () = [0,1] and L € IC?; : ,
0 min; (z;, e1) < 1}

Then, for every ¢ € S"! one has

hF[() 1], OOL(£> — mai<<€7 CE>+ — hL(ﬁ)

re
Consequently, for L € IC L0100l = L.

Theorem 6 (ngher—order Santalo inequality). Fix Q € K™, Consider a com-
pact domain L C M, ,,,(R) with positive volume. Then, for p > 1:

1

(L) v0l (T L — 5(TgpL)°) < vol (B o)
Onm m On - _ On .
v R 2oL, (T, 112, BY)

In particular, by sending p — o0:
1

VOl (L) vol, (T sl — (T 0 L))°) < vol, (BY) Vol (T8, . By ).

For an example of Theorem 6 that uses the higher-order structure of the results,
suppose = [0,1]" and L € IC?O’;n. Then, by writing R? for the ith copy of
M,,1(R) = R" in the decomposition of M, ,,(R) = R™ into m independent
products of R", one obtains, if s(I' jm L) = o,

VOlnm(L>% vol, (ﬂ (PR;@L)O> < vol,(Bj) Volnm(Hzg’ooBg)%.
i=1

The Random Simplex inequality in Schnei-
der’s Setting

Proposition 7. For L C R"™ a compact set with positive volume, K € K™, and
x € R" one has

1
V(K[n —1],T"L) = / V(K[n—1],0_0)di=E,(V(K[n—1],C_1)).
VOlnm<L> L
Using Proposition 7, we establish the following extension of the random simplex

inequality.
Theorem 8. The functional
(K, L) € K" x 8" =5 vol,y(L) " vol,(K) ™% B (V(K[n — 1], Cx))

is uniquely minimized when K is an ellipsoid and L = N1°" K for some \ > (.
A special case of the above theorem i1s that the functional

nm-+1

Vol (L)W EL (1w, (Cy)) = vol (L)~ /L W, (Cy)dz

is minimized for L = [1°" B over §™™.



