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1 Introduction: Convex bodies, Duality, & Volume.
Rn - the Euclidean n-dimensional vector space ( | · | denotes length, Bn

2 = {x ∈ Rn : |x| ≤ 1} the Euclidean ball
with boundary Sn−1 is the unit sphere and 〈, 〉 is the standard inner-product). K and L will denote convex bodies; K
contains the origin, has non-empty interior, is compact and x, y ∈ K → tx + (1− t)y ∈ K for every t ∈ [0, 1]. K is
symmetric ifK = −K. The Minkowski sum ofK and L is the set defined given byK+L = {x+y : x ∈ K, y ∈ L}.
K is uniquely determined by its radial function:

ρK(x) = max
{
t > 0 : tx ∈ K

}
.

Fact: for f ∈ L1(K), one can write
∫
K f (x)dx =

∫
Sn−1

∫ ρK(θ)

0 f (rθ)rn−1drdθ. Setting f = 1 yields the Lebesgue
measure, or volume, of K can be written as

Voln(K) =
1

n

∫
Sn−1

ρK(θ)ndθ.

We all know that Voln(λK) = λnVoln(K) for λ ≥ 0, i.e. volume is a homogeneous measure of degree of homo-
geneity n. But there is much more!

Mixed Volumes
K and L convex bodies in Rn and t ≥ 0. Then: Voln(K + tL) is a homogeneous polynomial (in t) of degree n and

Voln(K + tL) =

n∑
i=0

ti
(
n

i

)
V (K[n− i], L[i])

The coefficients V (K[n − i], L[i]) are called the mixed volumes of K [n − i] times and L [i] times. When i = 1, we
write V (K[n− 1], L). Facts about mixed volume:

1. V (K[n− i], K[i]) = Voln(K) for all i = 0, 1, . . . , n.

2. Mixed volume is translation invariant: V (K[n− 1], L + a) = V (K[n− 1], L), for a ∈ Rn.

3. For T ∈ GLn(Rn): V (TK[n − i], TL[i]) = | detT |V (K[n − i], L[i]). In particular: V (K[n − 1], L) =
V (−K[n− 1],−L).

4. The mean width of K is given by wn(K) = 1
Voln(Bn2 )V (Bn

2 [n− 1], K).

A set L containing the origin is a star body if it has a continuous radial function and it is star shaped (i.e. [o, x] ⊂ L
for every x ∈ L). Lutwak introduced the dual Mixed volume for star bodies K and L:

Ṽi(K[n− i], L[i]) =
1

n

∫
S
ρK(θ)n−iρL(θ)idθ.

When i = −1 we write Ṽ (K[n + 1], L).

How symmetric is a convex body?
Pθ⊥K: the orthogonal projection of K ⊂ Rn onto the hyperplane through the
origin orthogonal to θ ∈ Sn−1. Cauchy’s integral formula states

Voln−1 (Pθ⊥K) =
n

2
V (K[n− 1], [−θ, θ]) = nV (K[n− 1], [o, θ]).

The polar projection body of K, denoted Π◦K, is the symmetric convex
body given by ρΠ◦K(θ)−1 = Voln−1(Pθ⊥K).
Why symmetric? Translation invariance!

ρ−1
Π◦K(θ) = nV (K[n− 1], [o, θ]) = nV (K[n− 1], [o,−θ]) = ρ−1

Π◦K(−θ).

The fact that
ρ−1

Π◦(−K)(θ) = nV (−K[n− 1], [o, θ]) = nV (K[n− 1], [o,−θ]) = ρ−1
Π◦K(−θ)

shows
Π◦(−K) = Π◦K.

Petty’s isoperimetric inequality: Letting ∂K denote the topological boundary of K

Voln(Π◦K)Voln−1(∂K)n ≥ Voln(Bn
2 )

(
Voln(Bn

2 )

Voln−1(Bn−1
2 )

)n
,

with equality if, and only if, ΠK is a dilate ofBn
2 . (Note: follows from Jensen’s inequality and Aleksandrov’s formula

for mixed volume).

1

nn

(
2n

n

)
≤ Voln(K)n−1Voln(Π◦K) ≤

(
Voln(Bn

2 )

Voln−1(Bn−1
2 )

)n
. (1)

Right-hand side of (1): Petty’s projection inequality, proven by Petty in 1971; equality occurs in Petty’s inequality
if, and only if, K is an ellipsoid. Combining with Petty’s isoperimetric inequality yields the classical isoperimetric
inequality. The left-hand side of (1): Zhang’s inequality, proven by Zhang in 1991; equality holds if, and only if, K
is a simplex (convex hull of n + 1 affinely independent points).

The covariogram of K is given by gK(x) = Voln (K ∩ (K + x)) and is
supported on the difference body of K

DK = {x : K ∩ (K + x) 6= ∅} = K + (−K).

2n ≤ Voln(DK)

Voln(K)
≤
(

2n

n

)
.

Left-hand side: follows from the Brunn-Minkowski inequality (1/n-concavity of the Lebesgue measure
over all compact sets); equality if, and only if, K is symmetric. Right-hand side: the Rogers-Shephard
inequality, proven by Rogers and Shephard in 1957; equality holds if, and only if, K is a simplex.

Hint towards the proof:

dgK(rθ)

dr

∣∣∣∣
r=0+

= −ρΠ◦K(θ)−1.

Brunn-concavity: gK(x)1/n is concave on its support. Thus, for θ ∈ Sn−1 and
r ∈ [0, ρDK(θ)]:

0 ≤
[

1− r

ρDK(θ)

]
≤
(
gK(rθ)

Voln(K)

)1/n

≤
[

1− r

nVoln(K)ρΠ◦K(θ)

]
. (2)

Implies: ρDK(θ) ≤ nVoln(K)ρΠ◦K(θ), that is DK ⊂ nVoln(K)Π◦K.
Translation invariance and symmetry of the Lebesgue measure, and then Fubini’s:

Voln(K) =
1

Voln(K)

∫
K

Voln(y −K)dy =
1

Voln(K)

∫
DK

gK(y)dy.

Then, use polar coordinates and (2) and the beta function to obtain both Zhang’s in-
equality and the Rogers-Shephard inequality.

2 Rolf Schneider’s Higher-Order General-
ization
Definition 1. Given a convex K in Rn, its mth order covariogram is given by

gK,m(x̄) = Voln

(
K ∩

m⋂
i=1

(K + xi)

)
,

where x̄ = (x1, . . . , xm) ∈ (Rn)m ∼= Rnm. Fact: gK,m(x̄)1/n is concave.
The difference body of order m of K, Dm(K) := supp(gK,m). Schneider’s higher-order Rogers Shephard inequality:

Voln(K)−mVolnm (Dm(K)) ≤
(
nm + n

n

)
,

with equality if, and only if, K is a n-dimensional simplex. If n = 2, then the lower bound is obtained for all
symmetric bodies. For n ≥ 3 m ≥ 2, Schneider’s conjecture is that the lower bound is obtained for ellipsoids.

Operator Hopping (we start here)
Theorem 2. Let K be a convex body in Rn and m ∈ N. For every direction θ̄ = (θ1, . . . , θm) ∈ Snm−1, let
C−θ̄ = conv0≤i≤m[o,−θi]. Then:

d

dr
gK,m(rθ̄)

∣∣∣∣
r=0+

= −nV (K[n− 1], C−θ̄).

We define the mth order polar projection body of K as the convex body in Rnm whose radial function is given by

ρ−1
Π◦,mK(θ̄) = nV (K[n− 1], C−θ̄)

Π◦,mK contains the origin as an interior point. For u ∈ Sn−1, let uj = (o, . . . , o, u, o, . . . , o) ∈ Snm−1.

ρΠ◦,mK(uj)
−1 = nV (K[n− 1], [o,−u]) = ρΠ◦K(u)−1.

For m ≥ 2, Π◦,mK is symmetric if, and only if, a translate of K is symmetric (−Π◦,mK = Π◦,m(−K))

Theorem 3 (Higher-Order Petty’s isoperimetric inequality). Let K be a convex body and m ∈ N. Then, one has the
following inequality:

Volnm(Π◦,mK)Voln−1(∂K)nm ≥ Volnm(Π◦,mBn
2 )Voln−1(Sn−1)nm ≥ Volnm(Bnm

2 )

(
nVoln(Bn

2 )

wnm(ΠmBn
2 )

)nm
.

Equality in the first inequality holds if, and only if, ΠK is an Euclidean ball. If m = 1, there is equality in the
second inequality, while for m ≥ 2, the second inequality is strict.

Figure 1: A rectangle and
two directions in the plane

Radial Mean Bodies
Let ψ : [0,∞)→ [0,∞) be an integrable function that is right continuous and
differentiable at 0. Then, the map given by

Mψ : p 7→

{∫∞
0 tp−1(ψ(t)− ψ(0))dt, p ∈ (−1, 0),∫∞
0 tp−1ψ(t)dt, p > 0 such that tp−1ψ(t) ∈ L1(R+),

is piece-wise continuous. This map is known as the Mellin transform.

Definition 4. For m ∈ N and p > −1, we define the (m, p) radial mean
bodies Rm

p K, to be the star bodies (convex if p ≥ 0) in Rnm whose radial
functions are given by, for θ̄ ∈ Snm−1:

ρRmp K(θ̄) =

(
pMgK,m(rθ̄)

Voln(K)

(p)

)1
p

=

(
1

Voln(K)

∫
K

min
1≤i≤m

ρK(−θi)pdx
)1

p

for p 6= 0. The case p = 0 follows from continuity of the pth average.

What follows generalizes m = 1 by Gardner and Zhang. From Jensen’s in-
equality: for −1 < p ≤ q ≤ ∞

{o} = Rm
−1K ⊂ Rm

p K ⊂ Rm
q K ⊂ Dm(K).

However, by adjusting for asymptotics, we obtain

Voln(K)Π◦,mK = lim
p→−1

(1+p)
1
pRm

p K ⊂ (1+p)
1
pRm

p K ⊂ (1+q)
1
qRm

q K ⊂ Dm(K).

We can reverse the above: for −1 < p ≤ q ≤ ∞:

Dm(K) ⊆
(
n + q

n

)1
q

Rm
q K ⊆

(
n + p

n

)1
p

Rm
p K ⊆ nVoln(K)Π◦,mK,

with equality if, and only if, K is a n-dimensional simplex. This is estab-
lished with the following generalization of Berwald’s inequality by Fradelizi,
Li and Madiman.

Lemma 5. For every non-increasing, s-concave, s > 0, function ψ, the func-
tion

Gψ(p) :=

(
Mψ(p)

Mψs(p)

)1/p

=

(
p

(
p + 1

s

p

)
Mψ(p)

)1/p

is decreasing on (−1,∞) (here, ψs(t) = (1 − t)1/s). Additionally, if there is
equality for any two p, q ∈ (−1,∞), then Gψ(p) is constant. Furthermore,
Gψ(p) is constant if, and only if, ψs is affine on its support.
(note: version for s ≤ 0 also exists)

The fact that Volnm(RnmK) = Voln(K)m yields a different proof of Schnei-
der’s Rogers-Shephard inequality as well as:

Theorem 6 (Zhang’s inequality for higher-order projection bodies). Fix m ∈
N and K be a convex body in Rn. Then, one has

Voln(K)nm−mVolnm (Π◦,mK) ≥ 1

nnm

(
nm + n

n

)
,

with equality if, and only if, K is a n-dimensional simplex.


