Properties of the coordinate ring of a convex polyomino

Claudia Andrei1

Graduate Student Meeting on Applied Algebra and Combinatorics

March 2018
University of Osnabrück, Germany

1University of Bucharest, Romania
Outline

1. Preliminaries
2. Gorenstein convex polyominoes
3. The regularity of $\mathbb{K}[P]
4. The multiplicity of $\mathbb{K}[P]$

The coordinate ring of a convex polyomino was introduced by Qureshi.
In order to define polyominoes and polyomino ideals, we give some terminology.

On \mathbb{N}^2, we consider the natural partial order defined as follows:

$$(i,j) \leq (k,l) \text{ if and only if } i \leq k \text{ and } j \leq l.$$

Let $a = (i,j), \ b = (k,l) \in \mathbb{N}^2$ and $a \leq b$.

The set

$$[a, b] = \{c \in \mathbb{N}^2 \mid a \leq c \leq b\}$$

represents an interval in \mathbb{N}^2.
The interval

$$C = [a, a + (1, 1)]$$

is called a cell in \mathbb{N}^2 with lower left corner a.

Figure: A cell in \mathbb{N}^2
Let \mathcal{P} be a finite collection of cells in \mathbb{N}^2. Two cells A and B of \mathcal{P} are connected by a path in \mathcal{P}, if there is a sequence of cells of \mathcal{P} given by $A = A_1, A_2, \cdots, A_{n-1}, A_n = B$ such that $A_i \cap A_{i+1}$ is an edge of A_i and A_{i+1} for $i \in \{1, \cdots, n-1\}$.

Definition

A collection of cells \mathcal{P} is called a polyomino if any two cells of \mathcal{P} are connected by a path in \mathcal{P}.

Claudia Andrei
Properties of the coordinate ring of a convex polyomino
Preliminaries

Gorenstein convex polyominoes

The regularity of $K[\mathcal{P}]$

The multiplicity of $K[\mathcal{P}]$

Figure: A polyomino
Preliminaries

Gorenstein convex polyominoes
The regularity of $K[\mathcal{P}]$
The multiplicity of $K[\mathcal{P}]$

A column convex polyomino

A row convex polyomino

Figure: A convex polyomino
Let \mathcal{P} be a convex polyomino. After a possible translation, we consider $[(1,1), (m,n)]$ to be the smallest interval which contains the vertices of \mathcal{P}.

We say that \mathcal{P} is a convex polyomino on $[m] \times [n]$, where $[m] = \{1, \ldots, m\}$ and $[n] = \{1, \ldots, n\}$.
Let \mathcal{P} be a convex polyomino on $[m] \times [n]$. Fix a field \mathbb{K} and a polynomial ring

$$S = \mathbb{K}[x_{ij} \mid (i,j) \in V(\mathcal{P})],$$

where $V(\mathcal{P})$ is the set of the vertices of \mathcal{P}.

The polyomino ideal $I_{\mathcal{P}} \subset S$ is generated by all binomials

$$x_{il}x_{kj} - x_{ij}x_{kl}$$

for which $[(i,j),(k,l)]$ is an interval in \mathcal{P}.

The \mathbb{K}-algebra $S/I_{\mathcal{P}}$ is denoted $\mathbb{K}[\mathcal{P}]$ and is called the coordinate ring of \mathcal{P}.
Figure: For the "cross", I_P has 11 generators.
The ring

\[R = \mathbb{K}[x_i y_j \mid (i, j) \in \mathcal{V}(P)] \subset \mathbb{K}[x_1, \ldots, x_m, y_1, \ldots, y_n] \]

can be viewed as an edge ring of a bipartite graph \(G_P \) with vertex set

\[\mathcal{V}(G_P) = X \cup Y, \text{ where } X = \{x_1, \ldots, x_m\} \text{ and } Y = \{y_1, \ldots, y_n\} \]

and edge set

\[\mathcal{E}(G_P) = \{\{x_i, y_j\} \mid (i, j) \in \mathcal{V}(P)\}. \]
Preliminaries

Figure: The bipartite graph attached to a cell in \mathbb{N}^2

$K[\mathcal{P}]$ can be identified with $K[G_\mathcal{P}]$.

Let \mathcal{P} be a convex polyomino on $[m] \times [n]$.

Theorem (A. Qureshi, Theorem 2.2)

$K[\mathcal{P}]$ is a Cohen-Macaulay domain with $\dim K[\mathcal{P}] = m + n - 1$.

Claudia Andrei

Properties of the coordinate ring of a convex polyomino
Let $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$.

Theorem (H. Ohsugi, T. Hibi, Theorem 2.1)

We consider G to be a bipartite graph on $X \cup Y$ and suppose that G is 2-connected. Then $K[G]$ is Gorenstein if and only if $x_1 \cdots x_m y_1 \cdots y_n \in K[G]$ and one has $|N(T)| = |T| + 1$ for every subset $T \subset X$ such that $G_{T \cup N(T)}$ is connected and that $G_{(X \cup Y) \setminus (T \cup N(T))}$ is a connected graph with at least one edge.
Definition

Let G be a graph on V. Then we say that G is 2-connected if G together with $G \setminus \{v\}$ for all $v \in V$ are connected.

Proposition

If \mathcal{P} is a convex polyomino on $[m] \times [n]$, then the bipartite graph $G_{\mathcal{P}}$ is 2-connected.
Let G be a graph and $T \subset V(G)$. The set

$$N(T) = \{y \in V(G) \mid \{x, y\} \in E(G) \text{ for some } x \in T\}$$

represents the set of the neighbors of the subset $T \subset V(G)$. Let \mathcal{P} be a convex polyomino on $[m] \times [n]$. We set $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ and, if needed, we identify the point (x_i, y_j) in the plane with the vertex $(i, j) \in V(\mathcal{P})$.
Definition

Let $T \subset X$. The set $N_Y(T) = \{y \in Y \mid (x, y) \in V(\mathcal{P}) \text{ for some } x \in T\}$ is called a neighbor vertical interval if $N_Y(T) = \{y_a, y_{a+1}, \ldots, y_b\}$ with $a < b$ and for every $i \in \{a, a+1, \ldots, b-1\}$ there exists $x \in T$ such that $[(x, y_i), (x, y_{i+1})]$ is an edge in \mathcal{P}.

Claudia Andrei

Properties of the coordinate ring of a convex polyomino
Definition

Let $U \subset Y$. The set $N_X(U) = \{x \in X \mid (x,y) \in V(P) \text{ for some } y \in U\}$ is called a neighbor horizontal interval if $N_X(U) = \{x_a, x_{a+1}, \ldots, x_b\}$ with $a < b$ and for every $i \in \{a, a+1, \ldots, b-1\}$ there exists $y \in U$ such that $[(x_i,y), (x_{i+1},y)]$ is an edge in P.
Proposition

Let \mathcal{P} be a convex polyomino on $[m] \times [n]$ and $G_\mathcal{P}$ its associated bipartite graph. Then we have

$$x_1 \cdots x_m y_1 \cdots y_n \in K[G_\mathcal{P}]$$

if and only if

$$|N_Y(T)| \geq |T| \text{ for every } T \subseteq X \text{ and }$$

$$|N_X(U)| \geq |U| \text{ for every } U \subseteq Y.$$
Gorenstein convex polyominoes

Figure: Perfect matching for $G_{\mathcal{P}}$
Proposition

Let \mathcal{P} be a convex polyomino on $[m] \times [n]$ and $G := G_\mathcal{P}$ its associated bipartite graph. For each $\emptyset \neq T \subset X,$

$$N_Y(T) \text{ is a neighbor vertical interval if and only if } G_{T \cup N(T)} \text{ is a connected graph}$$

and

$$N_X(Y \setminus N_Y(T)) = X \setminus T \text{ is a neighbor horizontal interval if and only if } G_{(X \cup Y) \setminus (T \cup N_Y(T))} \text{ is a connected graph with at least one edge.}$$
Theorem

Let \mathcal{P} be a convex polyomino on $[m] \times [n]$. Then $K[\mathcal{P}]$ is Gorenstein if and only if the following conditions are fulfilled:

1. $|U| \leq |N_X(U)|$, \forall $U \subset Y$ and $|T| \leq |N_Y(T)|$, \forall $T \subset X$;
2. For every $\emptyset \neq T \subsetneq X$ with properties
 1. $N_Y(T)$ is a neighbor vertical interval and
 2. $N_X(Y \setminus N_Y(T)) = X \setminus T$ is a neighbor horizontal interval,
 one has $|N_Y(T)| = |T| + 1$.
Gorenstein convex polyominoes

\[K[P] \text{ is not Gorenstein} \quad \text{and} \quad K[P] \text{ is Gorenstein} \]
Gorenstein convex polyominoes

Let \mathcal{P} be a convex polyomino on $[m] \times [n]$. Then \mathcal{P} is called a stack polyomino if all cells of the first line of $[(1,1), (m,n)]$ are in \mathcal{P}.

Gorenstein stack polyomino
Let \(\mathcal{P} \) be a stack polyomino on \([m] \times [n]\). We consider \(H_{\mathbb{K}[\mathcal{P}]}(t) \) to be the Hilbert series of \(\mathbb{K}[\mathcal{P}] \). Then

\[
H_{\mathbb{K}[\mathcal{P}]}(t) = \frac{Q(t)}{(1-t)^d}
\]

where \(Q(t) \in \mathbb{Z}[t] \) and \(d \) is the Krull dimension of \(\mathbb{K}[\mathcal{P}] \). It is known that

\[
\text{reg}(\mathbb{K}[\mathcal{P}]) = \text{deg}(Q(t)) = \dim(\mathbb{K}[\mathcal{P}]) + a(\mathbb{K}[\mathcal{P}]),
\]

since \(\mathbb{K}[\mathcal{P}] \) is a Cohen-Macaulay ring. The \(a \)-invariant \(a(\mathbb{K}[\mathcal{P}]) \) of \(\mathbb{K}[\mathcal{P}] \) is defined to be the degree of the Hilbert series of \(\mathbb{K}[\mathcal{P}] \), which by definition is equal to \(\text{deg}(Q(t)) - d \).
Let G_P be the bipartite graph attached to P. In this section, we consider G_P as a digraph with all its arrows leaving the vertex set Y.

Figure: A stack polyomino and its associated digraph
The regularity of $K[\mathcal{P}]$

Definition

If $T \subset X \cup Y$, then

$\delta^+(T) = \{ e = (z, w) \in E(G_{\mathcal{P}}) \mid z \in T \text{ and } w \not\in T \}$ is the set of edges leaving the vertex set T and

$\delta^-(T) = \{ e = (z, w) \in E(G_{\mathcal{P}}) \mid z \not\in T \text{ and } w \in T \}$ is the set of edges entering the vertex set T.

The set $\delta^+(T)$ is called a directed cut of the digraph $G_{\mathcal{P}}$ if $\emptyset \neq T \subsetneq X \cup Y$ and $\delta^-(T) = \emptyset$.
In the digraph of the following figure, let

$$T_1 = \{x_3, y_2, y_3\} \text{ and } T_2 = \{x_3, y_1, y_2\}.$$

Then $\delta^+(T_2)$ is a directed cut, while $\delta^+(T_1)$ is not.
The regularity of $\mathbb{K}[\mathcal{P}]$

Since $\mathbb{K}[\mathcal{P}] \cong \mathbb{K}[G_{\mathcal{P}}]$,

$$\delta^+(T) = \{(x,y) \in V(\mathcal{P}) \mid x \notin T \text{ and } y \in T\}$$

and

$$\delta^-(T) = \{(x,y) \in V(\mathcal{P}) \mid x \in T \text{ and } y \notin T\}$$

for every $T \subset X \cup Y$.

Lemma

Let \mathcal{P} be a stack polyomino on $[m] \times [n]$, $G_{\mathcal{P}}$ its associated digraph and $T \subset X \cup Y$. Then $\delta^+(T)$ is a directed cut of the digraph $G_{\mathcal{P}}$ if and only if $T = T^x \cup T^y$ with $T^x \subset X$, $T^y \subset Y$ and $N_Y(T^x) \subset T^y$.

Proposition (C.E. Valencia, R.H. Villarreal, Proposition 4.2)

Let G be a connected bipartite graph with $V(G) = X \cup Y$. If G is a digraph with all its arrows leaving the vertex set Y, then

$-a(K[G]) = \text{the maximum number of disjoint directed cuts}$.
The regularity of $K[\mathcal{P}]$

Proposition

If \mathcal{P} is a stack polyomino on $[m] \times [n]$, then

$$-a(K[\mathcal{P}]) = \max\{m, n\}.$$

Corollary

If \mathcal{P} is a stack polyomino on $[m] \times [n]$, then

$$\text{reg}(K[\mathcal{P}]) = m + n - 1 - \max\{m, n\} = \min\{m, n\} - 1.$$
The regularity of $K[\mathcal{P}]$

Figure: $\text{reg}(K[\mathcal{P}]) = 3$
Let \mathcal{P} be a stack polyomino on $[m] \times [n]$.
The Hilbert series $H_{\mathbb{K}[\mathcal{P}]}(t)$ of $\mathbb{K}[\mathcal{P}]$ is given by

$$H_{\mathbb{K}[\mathcal{P}]}(t) = \frac{Q(t)}{(1-t)^d},$$

where $Q(t) \in \mathbb{Z}[t]$ and $d = \dim(\mathbb{K}[\mathcal{P}]) = m + n - 1$.
The multiplicity of $\mathbb{K}[\mathcal{P}]$, denoted $e(\mathbb{K}[\mathcal{P}])$, is given by $Q(1)$.
The multiplicity of $\mathbb{K}[\mathcal{P}]$

For every $i \in [m]$,

$$\text{height}(i) = \max\{j \in [n] \mid (i,j) \in V(\mathcal{P})\}.$$

We give a total order on the variables x_{ij}, with $(i,j) \in V(\mathcal{P})$:

$$x_{ij} > x_{kl} \text{ if and only if}$$

$$(\text{height}(i) > \text{height}(k)) \text{ or (height}(i) = \text{height}(k) \text{ and } i > k)$$

$$\text{or (}i = k \text{ and } j > l).$$

Let $<$ be the reverse lexicographical order induced by this order of variables.
It is known that the polyomino ideal I_P has a reduced Gröbner basis with respect to $<$ consisting of all inner 2-minors of P. We may view $\text{in}_<(I_P)$ as the Stanley-Reisner ideal of a simplicial complex, denoted Δ_P, on the vertex set $V(P)$.

It is known that Δ_P is a pure shellable simplicial complex.
The multiplicity of $\mathbb{K}[\mathcal{P}]$

Let \mathcal{P} be the polyomino of the figure. Then
\[\text{in}_<(I_{\mathcal{P}}) = (x_{11}x_{32}, x_{21}x_{32}, x_{21}x_{12}, x_{21}x_{13}, x_{22}x_{13})\]
and
\[\Delta_{\mathcal{P}} = \langle F_1 = \{(1,1), (2,1), (2,2), (2,3), (3,1)\} ;
F_2 = \{(1,1), (1,2), (2,2), (2,3), (3,1)\} ;
F_3 = \{(1,1), (1,2), (1,3), (2,3), (3,1)\} ;
F_4 = \{(1,2), (2,2), (2,3), (3,1), (3,2)\} ;
F_5 = \{(1,2), (1,3), (2,3), (3,1), (3,2)\}\rangle.

The order of the variables:

\[x_{23} > x_{22} > x_{21} > x_{13} > x_{12} > x_{11} > x_{32} > x_{31}\]
The multiplicity of $K[\mathcal{P}]$

Since

$$H_{K[\mathcal{P}]}(t) = H_{S/\text{in}_<(I_{\mathcal{P}})}(t) = H_{K[\Delta \mathcal{P}]}$$,

we obtain

$$e(K[\mathcal{P}]) = |\mathcal{F}(\Delta \mathcal{P})|,$$

where $\mathcal{F}(\Delta \mathcal{P})$ denotes the set of the facets of $\Delta \mathcal{P}$.

The multiplicity of $\mathbb{K}[\mathcal{P}]$

Definition

Let Δ be a simplicial complex on the vertex set V and $v \in V$. The **link of v in Δ** is the simplicial complex

$$\text{lk}(v) = \{ F \in \Delta \mid v \notin F \text{ and } F \cup \{v\} \in \Delta \}$$

and the **deletion of v** is the simplicial complex

$$\text{del}(v) = \{ F \in \Delta \mid v \notin F \}.$$
Let x_{ij} be the smallest variable in S and fix $\nu = (i, \text{height}(i)) \in V(P)$. If $i = 1$, then we denote by P_1 the polyomino obtained from P by deleting the cell which contains the vertex ν. Otherwise, P_1 is given by deleting the cell which contains the vertex $(m, \text{height}(m))$.
Lemma

We have $|\mathcal{F}(\Delta \mathcal{P}_1)| = |\mathcal{F}(\text{del}(v))|$.

- Preliminaries
- Gorenstein convex polyominoes
- The regularity of $\mathbb{K}[\mathcal{P}]$
- The multiplicity of $\mathbb{K}[\mathcal{P}]$
Let \mathcal{P}_2 be the polyomino obtained from \mathcal{P} by deleting all the cells of \mathcal{P} which lie below the horizontal edge interval containing the vertex v.

\begin{align*}
\mathcal{P} & \quad \mathcal{P}_2 \\
\begin{array}{c}
\text{V} \\
\text{v}
\end{array} & \quad \begin{array}{c}
\text{v}
\end{array}
\end{align*}

Lemma

We have $|\mathcal{F}(\Delta \mathcal{P}_2)| = |\mathcal{F}(\text{lk}(v))|$.
The multiplicity of \(K[P] \)

Theorem

Let \(P \) be a stack polyomino on \([m] \times [n]\) and \(v = (i,j) \in V(P) \) with the properties:

1. \(x_{i_1} \) is the smallest variable in \(S \) and
2. \(j = \text{height}(i) \).

Let \(P_1 \) and \(P_2 \) be the polyominoes presented above. Then

\[
e(K[P]) = e(K[P_1]) + e(K[P_2]).
\]
The multiplicity of $\mathbb{K}[\mathcal{P}]$

Figure: $e(\mathbb{K}[\mathcal{P}]) = 14$
Let \mathcal{P} be the following convex polyomino and $v = (5, 3)$. The link of v is the cone of the vertex $(5, 2)$ with the simplicial complex which we may associate to the collection of cells displayed in the right figure.

Figure: The order of the variables is $x_{24} > x_{23} > x_{22} > x_{14} > x_{13} > x_{12} > x_{43} > x_{42} > x_{41} > x_{33} > x_{32} > x_{31} > x_{53} > x_{52}$
Thank you for your attention!