

Graduate students meeting on applied algebra and Combinatorics University of Osnabrük

Strong persistence property of monomial ideals.

Jonathan Toledo jtt@math.cinvestav.mx Department of Mathematics of CINVESTAV-IPN

March 23, 2018.

Strong persistence property

Graphs with loops

Simple hypergraphs

Weighted ideals

An ideal I has the persistence property if $Ass(I^k) \subseteq Ass(I^{k+1})$ for each *k*.

An ideal I has the persistence property if $Ass(I^k) \subseteq Ass(I^{k+1})$ for each *k*.

Definition

An ideal I has the strong persistence property if $(I^{k+1}: I) = I^k$ for each k.

An ideal I has the persistence property if $Ass(I^k) \subseteq Ass(I^{k+1})$ for each *k*.

Definition

An ideal I has the strong persistence property if $(I^{k+1}: I) = I^k$ for each k.

Proposition (J. Herzog and A. A. Qureshi)

Strong persistence property implies persistence property.

Definition Let I be a monomial ideal of R with the unique minimal set of monomial generators $G(I) = \{u_1, ..., u_m\}$. Then, we say that I is a unisplit monomial ideal, if there exists $i \in \mathbb{N}$ with $1 \le i \le m$, such that each monomial u_j has no common factor with u_i for all $j \in N$ with $1 \le j \le m$ and $j \ne i$.

Definition Let I be a monomial ideal of R with the unique minimal set of monomial generators $G(I) = \{u_1, ..., u_m\}$. Then, we say that I is a unisplit monomial ideal, if there exists $i \in \mathbb{N}$ with $1 \le i \le m$, such that each monomial u_j has no common factor with u_i for all $j \in N$ with $1 \le j \le m$ and $j \ne i$.

Proposition (M. Naserneja)

Every unisplit(separablse) monomial ideal of R satisfies the strong persistence property

An ideal I has the strong persistence property if and only if $(I^r : I^s) = I^{r-s}$ for all $s \le r$.

An ideal I has the strong persistence property if and only if $(I^r : I^s) = I^{r-s}$ for all $s \le r$.

Proposition

Let I ideal in an Noetherian domain, then there exists an integer s_0 such that $(I^r : I^s) = I^{r-s}$ for all $r - s \ge s_0$.

An ideal I has the strong persistence property if and only if $(I^r : I^s) = I^{r-s}$ for all $s \le r$.

Proposition

Let I ideal in an Noetherian domain, then there exists an integer s_0 such that $(I^r : I^s) = I^{r-s}$ for all $r - s \ge s_0$.

Proposition

If an ideal I has the strong persistence, then I^t also has it for each $t \ge 1$.

Example

An ideal I has the strong persistence property if
(1) I is a cover ideal of a perfect graph.
(2) I is a polymatroidal ideal[J. Herzog and A. A. Qureshi].

Example

An ideal I has the strong persistence property if (1) I is a cover ideal of a perfect graph. (2) I is a polymatroidal ideal[J. Herzog and A. A. Qureshi].

Proposition (S. Morey, J. Martínez-Bernal, and R. H. Villarreal)

Let I be the edge ideal of a simple graph G, then $(I^{k+1}: I) = I^k$ for each K.

Example

An ideal I has the strong persistence property if (1) I is a cover ideal of a perfect graph. (2) I is a polymatroidal ideal[J. Herzog and A. A. Qureshi].

Proposition (S. Morey, J. Martínez-Bernal, and R. H. Villarreal)

Let I be the edge ideal of a simple graph G, then $(I^{k+1}: I) = I^k$ for each K.

The **edge ideal** of a simple graph G = (V, E) with $V = \{x_1, ..., x_n\}$ is the ideal I(G) of $R = K[x_1, ..., x_n]$ generated by

 $\left\{x_ix_j\mid \left\{x_i,x_j\right\}\in E\right\}.$

A graph with loops is a triplet $\mathcal{G} = (V, E, L)$ where G = (V, E) is a simple graph with $V = \{x_1, \ldots, x_n\}$ and $L \subseteq \{(x_i, x_i) \mid x_i \in V\}$, L is called the set of loops of \mathcal{G} .

A graph with loops is a triplet $\mathcal{G} = (V, E, L)$ where G = (V, E) is a simple graph with $V = \{x_1, \ldots, x_n\}$ and $L \subseteq \{(x_i, x_i) \mid x_i \in V\}$, L is called the set of loops of \mathcal{G} .

Definition

The **edge ideal** of a graph with loops $\mathcal{G} = (V, E, L)$, denoted by $I(\mathcal{G})$, is the ideal $I(G) + (\{x_i^2 \mid (x_i, x_i) \in L\})$ where $I(G) = (\{x_i x_j \mid x_i x_j \in E\})$ is the edge ideal of G = (V, E).

If \mathcal{G} is a graph with loops, then $(I(\mathcal{G})^{k+1} : I(\mathcal{G})) = I(\mathcal{G})^k$ for each k.

If \mathcal{G} is a graph with loops, then $(I(\mathcal{G})^{k+1} : I(\mathcal{G})) = I(\mathcal{G})^k$ for each k.

Corollary

The edge ideal of a graph with loops has the persistence property.

A **simple hypergraph** or a **clutter** C = (V, E) consists of a finite set $V = \{x_1, ..., x_n\}$, called vertex set, and a edge set *E* consisting of subsets of *V* such that they do not have inclusion relations.

A **simple hypergraph** or a **clutter** C = (V, E) consists of a finite set $V = \{x_1, \ldots, x_n\}$, called vertex set, and a edge set *E* consisting of subsets of *V* such that they do not have inclusion relations. The **edge ideal** of a simple hypergraph C = (V, E) is the ideal I(C) of $R = K[x_1, \ldots, x_n]$ generated by

$$\left\{\prod_{x_i\in e}x_i\mid e\in E\right\}.$$

A **simple hypergraph** or a **clutter** C = (V, E) consists of a finite set $V = \{x_1, \ldots, x_n\}$, called vertex set, and a edge set *E* consisting of subsets of *V* such that they do not have inclusion relations. The **edge ideal** of a simple hypergraph C = (V, E) is the ideal I(C) of $R = K[x_1, \ldots, x_n]$ generated by

$$\left\{\prod_{x_i\in e}x_i\mid e\in E\right\}.$$

Edge ideal defines a bijection between the set of clutters on $V = \{x_1, \ldots, x_n\}$ and the set of squarefree monomial ideals of $R = K[x_1, \ldots, x_n]$.

Let I be a squarefree monomial ideal, then $(I^2 : I) = I$.

Let I be a squarefree monomial ideal, then $(I^2 : I) = I$.

Example

Let C_0 be the clutter with vertex set $\{x_1, \ldots, x_6\}$ and whose edges are $x_1x_2x_3, x_1x_2x_4, x_1x_3x_5, x_1x_4x_6, x_1x_5x_6, x_2x_3x_6, x_2x_4x_5, x_2x_5x_6, x_3x_4x_5, x_3x_4x_6 C_0$ is an unmixed shellable. But $(I(C_0)^3 : I(C_0)) \neq I(C_0)^2$, consequently C_0 does not have the strong persistence property.

A clutter has the strong persistence property if and only if some of its connected components has the strong persistence property.

A clutter has the strong persistence property if and only if some of its connected components has the strong persistence property.

Lemma

Let C be a clutter such that there exists an edge $f \in E(C)$ such that the set $\{g \cap f \mid g \in E(C)\}$ is a chain, then I(C) has the strong persistence property.

A clutter has the strong persistence property if and only if some of its connected components has the strong persistence property.

Lemma

Let C be a clutter such that there exists an edge $f \in E(C)$ such that the set $\{g \cap f \mid g \in E(C)\}$ is a chain, then I(C) has the strong persistence property.

Theorem

Let C be a König unmixed clutter. If C does not contain 4-cycle, then C has the strong persistence property.

Let C be a clutter and $x \notin V(C)$, the **cone** over C is the clutter that has the vertex set $V(C) \cup \{x\}$ and edge set $\{f \cup \{x\} \mid f \in E(C)\}$ and it is denoted by Cx.

Let *C* be a clutter and $x \notin V(C)$, the **cone** over *C* is the clutter that has the vertex set $V(C) \cup \{x\}$ and edge set $\{f \cup \{x\} \mid f \in E(C)\}$ and it is denoted by Cx.

Proposition

Let C be a clutter and Cx its cone over C, then we have that:

- i) *C* has the strong persistence property if and only if *Cx* has the strong persistence property
- ii) C has the persistence property if and only if Cx has the persistence property.

Let C = (V, E) be a clutter and $x \in V$, the **deleting** of x is the clutter $C \setminus x$ whose vertex and edge sets are $V \setminus \{x\}$ and $\{f \in E \mid x \notin f\}$, respectively.

Similarly, the **contraction** of *x* is the clutter $C \not x$ whose set of vertices and edges are $V \setminus \{x\}$ and $\min\{f \setminus \{x\} \mid f \in E\}$, respectively.

Let C = (V, E) be a clutter and $x \in V$, the **deleting** of x is the clutter $C \setminus x$ whose vertex and edge sets are $V \setminus \{x\}$ and $\{f \in E \mid x \notin f\}$, respectively.

Similarly, the **contraction** of *x* is the clutter $C \not x$ whose set of vertices and edges are $V \setminus \{x\}$ and $\min\{f \setminus \{x\} \mid f \in E\}$, respectively.

Proposition

Let C be a clutter and $x \in V(C)$, then

- i) *C*/*x* has the persistence property if *C* has the persistence property
- ii) C ∕ x has the strong persistence property if C has the strong persistence property

A clutter ${\mathcal C}$ with 3 edges has the strong persistence property.

A clutter C with 3 edges has the strong persistence property.

Proposition

Let *X* be a set of vertices, $A \subseteq X$ and $x \notin X$, then the clutter *C* with edge set $\{X\} \cup \{xx_i \mid x_i \in A\}$ has the strong persistence property.

If I is a squarefree monomial ideal in $K[x_1, x_2, x_3, x_4]$, then I has the strong persistence property.

If I is a squarefree monomial ideal in $K[x_1, x_2, x_3, x_4]$, then I has the strong persistence property.

Conjecture

If I is a squarefree monomial ideal in $K[x_1, x_2, x_3, x_4, x_5]$, then I has the strong persistence property.

A weight over a polynomial ring $R = K[x_1, ..., x_n]$ is a function $w : \{x_1, ..., x_n\} \to \mathbb{N}$ and $w_i = w(x_i)$ is called the **weight** of the variable x_i .

A weight over a polynomial ring $R = K[x_1, ..., x_n]$ is a function $w : \{x_1, ..., x_n\} \to \mathbb{N}$ and $w_i = w(x_i)$ is called the **weight** of the variable x_i .

Definition

Given a monomial ideal I and a weight w, the **weighted ideal** is the ideal $I_w = (h(m) \mid m \in G(I))$ where h is the unique homomorphism $h : R \to R$ given by $x_i \mapsto x_i^{w_i}$.

Let I be a monomial ideal and w a weight, then

- i) $Ass(I_w^k) = Ass(I^k)$ for each k.
- ii) I has the persistence property if and only if I_w has the persistence property.
- iii) I has the strong persistence property if and only if I_w has the strong persistence property.

References

 i) E.Reyes and J.Toledo. On the strong persistence property for monomial ideals, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, Volume 60 (108)/2017, Issue no. 3, pages 293-305.

Thanks