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An ideal | has the persistence property if Ass(IX) C Ass(I*+") for
each k.
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Proposition (J. Herzog and A. A. Qureshi)

Strong persistence property implies persistence property.




Definition

Definition Let | be a monomial ideal of R with the unique minimal set
of monomial generators G(I) = {uy, ..., un}. Then, we say that lis a
unisplit monomial ideal, if there exists i € N with 1 < i < m, such that
each monomial u; has no common factor with u; for all j € N with
1<j<mandj#i.
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Proposition (M. Naserneja)

Every unisplit(separablse) monomial ideal of R satisfies the strong
persistence property
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such that (I": I°) =15 forallr — s > sp.




Proposition

An ideal | has the strong persistence property if and only if
(I": P)y=1I"5foralls <r.

Proposition

Let | ideal in an Noetherian domain, then there exists an integer sy
such that (I": I°) =15 forallr — s > sp.

Proposition

If an ideal | has the strong persistence, then I' also has it for each
t>1.
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An ideal | has the strong persistence property if
(1) l is a cover ideal of a perfect graph.
(2) | is a polymatroidal ideallJ. Herzog and A. A. Qureshi].

Proposition (S. Morey, J. Martinez-Bernal, and R. H.

Villarreal)

Let | be the edge ideal of a simple graph G, then (I**': I) = IX for
each K.

The edge ideal of a simple graph G = (V, E) with V = {xq,..., x»}
is the ideal /(G) of R = K|[x1, ..., Xn] generated by

{xi% | {x.%} € E}.



Definition

A graph with loops is a triplet G = (V,E,L) where G= (V,E) is a
simple graph with V = {xq,...,xp} and L C {(xj,X;) | x; € V}, Lis
called the set of loops of G.




Definition

A graph with loops is a triplet G = (V,E,L) where G= (V,E) is a
simple graph with V = {xq,...,xp} and L C {(xj,X;) | x; € V}, Lis
called the set of loops of G.

Definition

The edge ideal of a graph with loops G = (V, E, L), denoted by I(G),
is the ideal I(G) + ({x? | (xi, x;) € L}) where I(G) = ({xix; | xix; € E})
is the edge ideal of G = (V, E).
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IfG is a graph with loops, then (I(G)k*1: I(G)) = I(G)¥ for each k.
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IfG is a graph with loops, then (1(G)**": I(G)) = I(G)¥ for each k.

The edge ideal of a graph with loops has the persistence property. I
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A simple hypergraph or a clutter C = (V, E) consists of a finite set
V ={x1,...,Xn}, called vertex set, and a edge set E consisting of
subsets of V such that they do not have inclusion relations.
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A simple hypergraph or a clutter C = (V, E) consists of a finite set
V ={x1,...,Xn}, called vertex set, and a edge set E consisting of
subsets of V such that they do not have inclusion relations.

The edge ideal of a simple hypergraph C = (V, E) is the ideal /(C) of
R = K[x1, ..., Xxs] generated by

{Hx,-|eeE}.
xice

Edge ideal defines a bijection between the set of clutters on
V = {x1,...,Xn} and the set of squarefree monomial ideals of
R=K[xi,..., X
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Proposition

Let | be a squarefree monomial ideal, then (17 : ) = I.
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Proposition
Let | be a squarefree monomial ideal, then (17 : ) = I.

Let Cy be the clutter with vertex set {x1, ..., Xs} and whose edges are
X1 X2 X3, X1 X2 X4, X1 X3X5, X1X4Xe, X1X5Xe, XoX3Xe, XoX4 X5, XoX5X6, X3X4X5,
X3XsXs Co is an unmixed shellable. But (1(Co)®: 1(Co)) # 1(Co)?,
consequently Cy does not have the strong persistence property.




A clutter has the strong persistence property if and only if some of its
connected components has the strong persistence property.
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A clutter has the strong persistence property if and only if some of its
connected components has the strong persistence property.

Theorem

Lemma

Let C be a clutter such that there exists an edge f € E(C) such that
the set{gnf | g e E(C)} is a chain, then I(C) has the strong
persistence property.
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A clutter has the strong persistence property if and only if some of its
connected components has the strong persistence property.

Theorem

N,

Lemma

Let C be a clutter such that there exists an edge f € E(C) such that
the set{gnf | g e E(C)} is a chain, then I(C) has the strong
persistence property.

A

Theorem

Let C be a Kénig unmixed clutter. If C does not contain 4-cycle, then C
has the strong persistence property.

y




Definition

Let C be a clutter and x ¢ V(C), the cone over C is the clutter that has
the vertex set V(C) U {x} and edge set {f U {x} | f € E(C)} and itis
denoted by Cx.




Definition

Let C be a clutter and x ¢ V(C), the cone over C is the clutter that has
the vertex set V(C) U {x} and edge set {f U {x} | f € E(C)} and itis
denoted by Cx.

Proposition
LetC be a clutter and Cx its cone over C, then we have that:
i) C has the strong persistence property if and only if Cx
has the strong persistence property

ii) C has the persistence property if and only if Cx has the
persistence property.
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LetC = (V, E) be a clutter and x € V, the deleting of x is the clutter
C \ x whose vertex and edge sets are V \ {x} and {f € E | x ¢ f},
respectively.

Definition

Similarly, the contraction of x is the clutter C /x whose set of
vertices and edges are V \ {x} and min{f\ {x} | f € E}, respectively.
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LetC = (V, E) be a clutter and x € V, the deleting of x is the clutter
C \ x whose vertex and edge sets are V \ {x} and {f € E | x ¢ f},
respectively.

Definition

Similarly, the contraction of x is the clutter C /x whose set of
vertices and edges are V \ {x} and min{f\ {x} | f € E}, respectively.

Proposition
LetC be a clutter and x € V(C), then

i) C/x has the persistence property if C has the
persistence property

ii) Cx has the strong persistence property ifC has the
strong persistence property

v
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Proposition
A clutter C with 3 edges has the strong persistence property.




Proposition
A clutter C with 3 edges has the strong persistence property.

Proposition

Let X be a set of vertices, A C X and x ¢ X, then the clutter C with
edge set {X} U {xx; | x; € A} has the strong persistence property.




Proposition

If I is a squarefree monomial ideal in K[x1, X2, X3, X4], then | has the
strong persistence property.




Proposition

If I is a squarefree monomial ideal in K[x1, X2, X3, X4], then | has the
strong persistence property.

If I is a squarefree monomial ideal in K[x1, X2, X3, X, Xs], then | has
the strong persistence property.




Definition

A weight over a polynomial ring R = K[x1, ..., Xp] is a function
w:{xi,...,xp} — N and w; = w(x;) is called the weight of the
variable x;.




Definition

A weight over a polynomial ring R = K[x1, ..., Xp] is a function
w:{xi,...,xp} — N and w; = w(x;) is called the weight of the
variable x;.

Definition

Given a monomial ideal | and a weight w, the weighted ideal is the
ideal I, = (h(m) | m € G(I)) where h is the unique homomorphism
h: R — R given by x; — x;"'.
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Theorem

Let | be a monomial ideal and w a weight, then
i) Ass(IX) = Ass(I¥) for each k.
ii) I has the persistence property if and only if I, has the
persistence property.

iii) I has the strong persistence property if and only if I,
has the strong persistence property.
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