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Empty lattice d-simplices

@ A d-polytope is the convex hull of a finite set of points in some R?. Its dimension is
the dimension of its affine span. (E.g., 2-polytopes = Convex polygons, etc.)

@ A d-polytope is a d-simplex if its vertices are exactly d 4+ 1. Equivalently, if they
are affinely independent. (Triangle, tetrahedron,...)
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Empty lattice d-simplices

@ A d-polytope is the convex hull of a finite set of points in some R?. Its dimension is
the dimension of its affine span. (E.g., 2-polytopes = Convex polygons, etc.)

@ A d-polytope is a d-simplex if its vertices are exactly d 4+ 1. Equivalently, if they
are affinely independent. (Triangle, tetrahedron,...)

Definition

A lattice polytope P C R% is a polytope with integer vertices. It is:
@ hollow if it has no integer points in its interior.
e empty if it has no integer points other than its vertices.

In particular, an empty d-simplex is the convex hull of d + 1 affinely
independent integer points and not containing other integer points.

N ON b

Empty 2 and 3-simplices and hollow 2-polytope.
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Volume, width

e The normalized volume Vol(P) of a lattice polytope P equals its
Euclidean volume vol(P) times d!.
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Volume, width

e The normalized volume Vol(P) of a lattice polytope P equals its
Euclidean volume vol(P) times d!.
It is always and integer, and for a lattice simplex

A = conv{vy,...,v4.1 }R? it coincides with its determinant:
Vol(A) = det ‘”11 o “dlﬂ‘
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Volume, width

@ The normalized volume Vol(P) of a lattice polytope P equals its
Euclidean volume vol(P) times d!.
It is always and integer, and for a lattice simplex

A = conv{vy,...,v4.1 }R? it coincides with its determinant:
Vol(A) = det ‘”11 o “dlﬂ‘

o The width of P C R with respect to a linear functional f : R — R
equals the difference max,cp f(x) — mingep f(x).
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Volume, width

@ The normalized volume Vol(P) of a lattice polytope P equals its
Euclidean volume vol(P) times d!.
It is always and integer, and for a lattice simplex

A = conv{vy,...,v4.1 }R? it coincides with its determinant:
Vol(A) = det ‘”11 . “dfl‘

o The width of P C R with respect to a linear functional f : R — R
equals the difference max,cp f(x) — mingep f(x).
We call (lattice) width of P the minimum width of P with respect to
integer functionals. *?T?T?°
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We call rational (lattice) diameter of P to the maximum length of a
rational segment contained in P (with “length” measured with respect to
the lattice).

[ ]
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o diam(P) =45
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We call rational (lattice) diameter of P to the maximum length of a
rational segment contained in P (with “length” measured with respect to
the lattice).

e © < 9 @ d|am(P) =45

@ It equals the inverse of the first successive minimum of P — P. In
particular, Minkowski's First Theorem implies:

Vol(P) < d!diam(P)<.

o Not to be mistaken with the (integer) lattice diameter = max. lattice
length of an integer segment in P.
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What do we know about empty lattice d-simplices?

We write P &7 Q meaning Q) = ¢(P) for some unimodular affine integer
transformation, ¢.
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What do we know about empty lattice d-simplices?

We write P &7 Q meaning Q) = ¢(P) for some unimodular affine integer
transformation, ¢. Modulo this equivalence relation:

@ The only empty 1-simplex is the unit segment.
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What do we know about empty lattice d-simplices?

We write P &7 Q meaning Q) = ¢(P) for some unimodular affine integer
transformation, ¢. Modulo this equivalence relation:

@ The only empty 1-simplex is the unit segment.

@ The only empty 2-simplex is the unimodular triangle (~ Pick’s
Theorem).
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What do we know about empty lattice d-simplices?

We write P &7 Q meaning Q) = ¢(P) for some unimodular affine integer
transformation, ¢. Modulo this equivalence relation:

@ The only empty 1-simplex is the unit segment.

@ The only empty 2-simplex is the unimodular triangle (~ Pick’s
Theorem).

o Empty lattice 3-simplices are completely classified:

Theorem (White 1964)

Every empty tetrahedron of determinant q is equivalent to

T(p,q) := conv{(0,0,0),(1,0,0),(0,0,1),(p,q,1)}

for some p € Z with ged(p, q) = 1. Moreover, T (p, q) =4 T(p', q) if and
only if p' = +p*! (mod q).

v
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What do we know about empty lattice 3-simplices

In particular, they all have width 1, i.e., they are between two parallel
lattice hyperplanes.

In this picture, they have width 1 with respect to the functional
flz,y,2) =2
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What do we know about empty lattice 4-simplices

In contrast, a full classification of empty lattice 4-simplices is not known.
If we look at their width, we know that:
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What do we know about empty lattice 4-simplices

In contrast, a full classification of empty lattice 4-simplices is not known.
If we look at their width, we know that:

© There are infinitely many of width one (Reeve polyhedra).
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@ There are infinitely many of width 2 (Haase-Ziegler 2000).
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What do we know about empty lattice 4-simplices

In contrast, a full classification of empty lattice 4-simplices is not known.
If we look at their width, we know that:

© There are infinitely many of width one (Reeve polyhedra).
@ There are infinitely many of width 2 (Haase-Ziegler 2000).

© The amount of empty 4-simplices of width greater than 2 is finite:

Proposition (Blanco-Haase-Hofmann-Santos, 2016)

@ For each d, there is a w™(d) such that for every n € N all but finitely
many d-polytopes with n lattice points have width < w™(d).

Q@ w>(4) =2
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What do we know about empty lattice 4-simplices?

Theorem (Haase-Ziegler, 2000)

Among the 4-dimensional empty simplices with width greater than two and
determinant D < 1000,

Q All simplices of width 3 have determinant D < 179, with a (unique)
smallest example, of determinant D = 41, and a (unique) example of
determinant D = 179.

@ There is a unique class of width 4, with determinant D = 101,

© There are no simplices of width w > 5,
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What do we know about empty lattice 4-simplices?

Theorem (Haase-Ziegler, 2000)

Among the 4-dimensional empty simplices with width greater than two and
determinant D < 1000,

Q All simplices of width 3 have determinant D < 179, with a (unique)

smallest example, of determinant D = 41, and a (unique) example of
determinant D = 179.

@ There is a unique class of width 4, with determinant D = 101,
© There are no simplices of width w > 5,

v

Conjecture (Haase-Ziegler, 2000)

The above list is complete. That is, there are no empty 4-simplices of
width > 2 and determinant > 179.

Theorem (I.V.-Santos, 2018)

This conjecture is true.
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Part | and Part Il of the talk

o Part |I: Empty 4-simplices of width greater than two
The proof of the conjecture follows from the combination of a
theoretical Theorem 1 and the Theorem 2 based on an enumeration:
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Part | and Part Il of the talk

o Part |I: Empty 4-simplices of width greater than two
The proof of the conjecture follows from the combination of a
theoretical Theorem 1 and the Theorem 2 based on an enumeration:

Theorem 1 (1.V.-Santos, 2018)

There is no hollow 4-simplex of width > 2 with determinant greater than
5058.
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Part | and Part Il of the talk

o Part |I: Empty 4-simplices of width greater than two
The proof of the conjecture follows from the combination of a
theoretical Theorem 1 and the Theorem 2 based on an enumeration:

Theorem 1 (1.V.-Santos, 2018)

There is no hollow 4-simplex of width > 2 with determinant greater than
5058.

Theorem 2 (1.V.-Santos, 2018)

Up to determinant < 7600, all empty 4-simplices of width larger than two
have determinant in [41,179] and are as described explicitly by Haase and
Ziegler.

@ Part II: The complete classification of empty 4-simplices We
show new results regarding the classification of the infinite families of
width two
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Theorem 1: case " P can be projected to a hollow polytope”

Let P be a empty lattice 4-simplex of width greater than two. We separate
in two cases:

Case 1 There is an integer projection w : P — Q) to a hollow 3-polytope Q.
Then, @ will also have width greater than two, and there are only the
following five hollow 3-polytopes of width greater than two (Averkov,
Kriimpelmann and Weltge, 2015).

Y.

Figure : The five hollow lattice 3-polytopes of width greater than two. Their
normalized volumes are 27, 25, 27, 27 and 27. respectively.
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Theorem 1: case " P can be projected to a hollow polytope”

We can show that in this case:

Proposition

If a hollow 4-simplex P of width at least three can be projected to a hollow
lattice 3-polytope @, then

Vol(P) < Vol(Q) < 27.

Sketch of proof: The volume of P equals the volume of @ times the length
of the maximum fiber in P. This fiber is projecting to a lattice point and P
is hollow, which implies the fiber to have length at most one. O
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Thm 1: case "P cannot be projected to a hollow polytope”

Case 2 There is no integer projection of P to a hollow 3-polytope
We use the following lemma:

Lemma

Let m: P — @ be an integer projection of a hollow d-simplex P onto a
non-hollow /attice (d — 1)-polytope Q. Let:

@ 0 be the maximum length of a fiber (x~! of a point) in P.

@ 0 <r <1 be the maximum dilation factor such that () contains a
homothetic hollow copy Q, of itself.

Then:
Q@ Vol(P) <§Vol(Q).
Q@il>1—r.
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Thm 1: case "P cannot be projected to a hollow polytope”

Case 2 There is no integer projection of P to a hollow 3-polytope
We use the following lemma:

Lemma

Let m: P — @ be an integer projection of a hollow d-simplex P onto a
non-hollow /attice (d — 1)-polytope Q. Let:

@ 0 be the maximum length of a fiber (x~! of a point) in P.

@ 0 <r <1 be the maximum dilation factor such that () contains a
homothetic hollow copy Q, of itself.

Then:
Q@ Vol(P) <§Vol(Q).
Q@il>1—r.

@ r measures whether Q) is “close to hollow” (r ~ 1) or “far from hollow” (r ~ 0)

@ In what follows we project P along the direction with d=diam(P). Part (2) says “if
Q is far from hollow then diam(P) is small”
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Figure : Projection of an empty (d)-simplex into an (d — 1)-polytope
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The dichotomy

So, let w : P — @ be the projection along the direction giving the diameter
of P, so that the § in the theorem equals the lattice diameter of P. We
have a dichotomy:
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The dichotomy

So, let w : P — @ be the projection along the direction giving the diameter
of P, so that the § in the theorem equals the lattice diameter of P. We
have a dichotomy:

e If Q is “far from hollow" then we use Minkowski's First Thm.
Vol(P — P) < d!2%5¢. Together with Vol(P — P) = (*)) Vol(P)
(Rogers-Shephard for a simplex):

Vol(P — P) _ 2416
Vol(P) = <
=T =

E.g., with » < 0.81, § <1/0.19.

6% = 5.485%.

Vol(P) < 5.48 - §* < 4210.
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The dichotomy

So, let w : P — @ be the projection along the direction giving the diameter
of P, so that the § in the theorem equals the lattice diameter of P. We
have a dichotomy:

e If Q is “close to hollow” then we use the Lemma:

Vol(P) = § Vol(Q) = 7%VOI(QT), where :

@ r is bounded away from 0: by the previous case we can assume
r > 0.81.

@ Q. is hollow of width at least 3r > 2.5, which implies
Vol(Q,) < 323—2 = 148.148 (see next slide).

© 0 < 42 (we skip this).

...so we get an upper bound on Vol(P).
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A bound on the volume of @,

Proposition (I.V.-Santos, 2018, generalizing Averkov. Kriimpelmann

and Weltge. 2015)

Let w > 2.5. Then, the following holds for any lattice-free convex body K
in dimension three of width at least w:

@) 3
48w
I(K) < ——— <222.22....
VollK) < =7 <
(b) If K is a lattice 3-polytope with at most five points:
Vol(K) < 3200 48148
o S o1y S U818
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An upper bound for the volume of empty 4-simplices

Putting the bounds for r > 0.81, Vol(Q,) < 148.148 ... and § < 42
together we get:

3

) 1 )
Vol(P) < T—3V01(Qr) < 42W32673 < 10751.

But these three bounds are not independent since:
o l1-r<é!(eg,ifr~5/6then s <6).

3
e Vol(Q,) <32 <3311) (e.g., if r ~ 1 then Vol(Q,) ~ 108).
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An upper bound for the volume of empty 4-simplices

Putting the bounds for r > 0.81, Vol(Q,) < 148.148 ... and § < 42
together we get:

§ 1 .58
But these three bounds are not independent since:
o l1-r<é!(eg,ifr~5/6then s <6).
3
e Vol(Q,) <32 <3311) (e.g., if r ~ 1 then Vol(Q,) ~ 108).

Optimizing the three parameters together we get (r < 0.81, § < 1/0.19).

Vol(P) < 5058.
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An upper bound for the volume of empty 4-simplices

Summing up:

@ If P projects to a hollow 3-polytope then

Vol(P) < 27

o If P does not project to a hollow 3-polytope we have the following
cases:

@ Q is “far from hollow” (r < 0.81) then

Vol(P) < 4210

@ If Q is “close to hollow” (r > 0.81) then

Vol(P) < 5058
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Theorem 2: Two different enumeration algorithms

To enumerate all empty 4-simplices of a given determinant D we use one
of two algorithms:

Algorithm 1: If D has less than 5 prime factors. It is a complete
enumeration of all posibilitys after fixing one of the facets of the simplex.

Algorithm 2: If D has at least 2 prime factors. Create the simplices by
decomposing the volume D = ab with a and b relatively prime and
combining the simplices with volumes a and b.

For some values of D both algorithms can be used, or different
factorizations of D can be chosen in Algorithm 2. Experimentally, we
observe that Algorithm 2 is much slower than Algorithm 1 if @ < b, and
slightly faster than Algorithm 1 if @ ~ b:
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Computational data
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Computation time (sec.) for the list of all empty lattice 4-simplices of a
given determinant

Oscar lglesias Empty 4-simplices March 22th, 2018 19 / 24



Part Il: Empty 4-simplices of width one and two

We have identified all empty lattice 4-simplices of with greater than two.
How to classify the rest of empty lattice 4-simplices:

@ Those of width 1 can be classified as they form a 3-parameter family,
similiar to the White Theorem in dimension 3.

conv{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,0,1), (a, b, V; 1)},
with ged(a, b, V) = 1.
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Part Il: Empty 4-simplices of width one and two

We have identified all empty lattice 4-simplices of with greater than two.
How to classify the rest of empty lattice 4-simplices:

@ Those of width 1 can be classified as they form a 3-parameter family,
similiar to the White Theorem in dimension 3.
conv{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,0,1), (a, b, V, 1)},
with ged(a, b, V) = 1.
@ Those of width 2:
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Part Il: Empty 4-simplices of width one and two

We have identified all empty lattice 4-simplices of with greater than two.
How to classify the rest of empty lattice 4-simplices:

@ Those of width 1 can be classified as they form a 3-parameter family,
similiar to the White Theorem in dimension 3.
conv{(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,1), (a,b,V, 1)},
with ged(a, b, V) = 1.

@ Those of width 2: The following work it will be available soon
(hoping...) (I.V.-Santos,'18+)
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Part Il: Empty 4-simplices of width one and two

We have identified all empty lattice 4-simplices of with greater than two.
How to classify the rest of empty lattice 4-simplices:

@ Those of width 1 can be classified as they form a 3-parameter family,
similiar to the White Theorem in dimension 3.
conv{(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,1), (a,b,V, 1)},
with ged(a, b, V) = 1.

@ Those of width 2: The following work it will be available soon
(hoping...) (I.V.-Santos,'18+)

Theorem (Not true (Barile et al. 2011))

All except for finitely many empty 4-simplices belong to the classes (of
cyclic quotient singularities) classified by Mori-Morrison-Morrison (1988),
and hence have width at most two.

We still have some information of those of width 2.
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Classification of empty 4-simplices

At the end, we have found some new families that can complete the
classification of empty 4-simplices of width 2, and so, the classification of
empty 4-simplices.

Theorem (1.V.-Santos, '18+)

All except for finitely many empty 4-simplices belong to one of the
following cases:

The three-parameter family of empty 4-simplices of width one.

Two 2-parameter families of empty 4-simplices projecting to the

second dilation of a unimodular triangle (one listed by Mori et al., the

other not).

The 29 Mori 1-parameter families (they project to 29 hollow
"primitive" 3-polytopes).

23 additional 1-parameter families that project to 23 “non-primitive"

hollow 3-polytopes.

v
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Finitely many empty 4-simplices

At the end, we have found some new families that can complete the
classification of empty 4-simplices of width 2, and so, the classification of
empty 4-simplices.

Theorem (I.V.-Santos, '18+)

There are exactly 2461 (classes of ) empty 4-simplices that do not belong
to any of the infinite families shown in the theorem before. These empty
4-simplices correspond to those that do not project to a hollow

d — 1-polytope. Their determinants range from 24 to 419.

Remark

The empty 4-simplices of width greater than 3 explicity discribed in Part |
of this talk are 180 cases of these 2461.
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Thanks for your attention

The article for part | you can check it in arXiv:1704.07299 and also
accepted for publication in TAMS

Supported by grants MTM2011-22792; BES-2012-058920 of the Spanish

Ministry of Science
email: oscar.iglesias@unican.es
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