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Empty lattice d-simplices

A d-polytope is the convex hull of a finite set of points in some Rd. Its dimension is
the dimension of its affine span. (E.g., 2-polytopes = Convex polygons, etc.)
A d-polytope is a d-simplex if its vertices are exactly d+ 1. Equivalently, if they
are affinely independent. (Triangle, tetrahedron,. . . )

Definition
A lattice polytope P ⊂ Rd is a polytope with integer vertices. It is:

hollow if it has no integer points in its interior.
empty if it has no integer points other than its vertices.

In particular, an empty d-simplex is the convex hull of d+ 1 affinely
independent integer points and not containing other integer points.

Empty 2 and 3-simplices and hollow 2-polytope.
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Volume, width

The normalized volume Vol(P ) of a lattice polytope P equals its
Euclidean volume vol(P ) times d!.

It is always and integer, and for a lattice simplex
∆ = conv{v1, . . . , vd+1}Rd it coincides with its determinant:

Vol(∆) = det

∣∣∣∣v1 . . . vd+1

1 . . . 1

∣∣∣∣
The width of P ⊂ Rd with respect to a linear functional f : Rd → R
equals the difference maxx∈P f(x)−minx∈P f(x).
We call (lattice) width of P the minimum width of P with respect to
integer functionals.
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We call (lattice) width of P the minimum width of P with respect to
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width(P, f) = 4
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Diameter

We call rational (lattice) diameter of P to the maximum length of a
rational segment contained in P (with “length” measured with respect to
the lattice).

δ

diam(P ) = 4.5

It equals the inverse of the first successive minimum of P − P . In
particular, Minkowski’s First Theorem implies:

Vol(P ) ≤ d! diam(P )d.

Not to be mistaken with the (integer) lattice diameter = max. lattice
length of an integer segment in P .
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What do we know about empty lattice d-simplices?

We write P ∼=Z Q meaning Q = φ(P ) for some unimodular affine integer
transformation, φ.

Modulo this equivalence relation:

The only empty 1-simplex is the unit segment.

The only empty 2-simplex is the unimodular triangle (' Pick’s
Theorem).

Empty lattice 3-simplices are completely classified:

Theorem (White 1964)

Every empty tetrahedron of determinant q is equivalent to

T (p, q) := conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}

for some p ∈ Z with gcd(p, q) = 1. Moreover, T (p, q) ∼=Z T (p′, q) if and
only if p′ = ±p±1 (mod q).
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What do we know about empty lattice 3-simplices

In particular, they all have width 1, i.e., they are between two parallel
lattice hyperplanes.

z = 1

z = 0

x

y

z

e1

e3

o

(p, q, 1)

In this picture, they have width 1 with respect to the functional
f(x, y, z) = z.
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What do we know about empty lattice 4-simplices

In contrast, a full classification of empty lattice 4-simplices is not known.
If we look at their width, we know that:

1 There are infinitely many of width one (Reeve polyhedra).

2 There are infinitely many of width 2 (Haase-Ziegler 2000).

3 The amount of empty 4-simplices of width greater than 2 is finite:

Proposition (Blanco-Haase-Hofmann-Santos, 2016)
1 For each d, there is a w∞(d) such that for every n ∈ N all but finitely

many d-polytopes with n lattice points have width ≤ w∞(d).
2 w∞(4) = 2.
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What do we know about empty lattice 4-simplices?

Theorem (Haase-Ziegler, 2000)
Among the 4-dimensional empty simplices with width greater than two and
determinant D ≤ 1000,

1 All simplices of width 3 have determinant D ≤ 179, with a (unique)
smallest example, of determinant D = 41, and a (unique) example of
determinant D = 179.

2 There is a unique class of width 4, with determinant D = 101,
3 There are no simplices of width w ≥ 5,

Conjecture (Haase-Ziegler, 2000)
The above list is complete. That is, there are no empty 4-simplices of
width > 2 and determinant > 179.

Theorem (I.V.-Santos, 2018)
This conjecture is true.
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Part I and Part II of the talk

Part I: Empty 4-simplices of width greater than two
The proof of the conjecture follows from the combination of a
theoretical Theorem 1 and the Theorem 2 based on an enumeration:

Theorem 1 (I.V.-Santos, 2018)
There is no hollow 4-simplex of width > 2 with determinant greater than
5058.

Theorem 2 (I.V.-Santos, 2018)
Up to determinant ≤ 7600, all empty 4-simplices of width larger than two
have determinant in [41, 179] and are as described explicitly by Haase and
Ziegler.

Part II: The complete classification of empty 4-simplices We
show new results regarding the classification of the infinite families of
width two
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Theorem 1: case “P can be projected to a hollow polytope”

Let P be a empty lattice 4-simplex of width greater than two. We separate
in two cases:

Case 1 There is an integer projection π : P → Q to a hollow 3-polytope Q.
Then, Q will also have width greater than two, and there are only the
following five hollow 3-polytopes of width greater than two (Averkov,
Krümpelmann and Weltge, 2015).

M4,6 M4,4 M4,2

M ′
4,4 M5,4 M5,2 M6,2

Figure 1: The Z3-maximal integral lattice-free polytopes with lattice width two. For
further reference, the polytopes are labeled by a pair of indices (i, j), where i is the
number of facets and j the lattice diameter (defined at the end of the introduction).

Figure 2: The Z3-maximal integral lattice-free polytopes with lattice width three.

Proof strategy

In the proof of Theorem 1, we use a classification of all Z2-maximal polytopes in P(1
2Zd).

This is provided in Section 2. Every such polytope is contained in an R2-maximal lattice-
free convex set L in the plane and its vertices then have to be contained in L ∩ 1

2Z2. We
give a slightly extended version of the well-known classification of R2-maximal lattice-free
convex sets L which allows us to enumerate all Z2-maximal lattice-free 1

2Z2-polyhedra.
We then turn to integral Z3-maximal lattice-free polyhedra in dimension three. We

4

Figure : The five hollow lattice 3-polytopes of width greater than two. Their
normalized volumes are 27, 25, 27, 27 and 27. respectively.
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Theorem 1: case “P can be projected to a hollow polytope”

We can show that in this case:

Proposition

If a hollow 4-simplex P of width at least three can be projected to a hollow
lattice 3-polytope Q, then

Vol(P ) ≤ Vol(Q) ≤ 27.

Sketch of proof: The volume of P equals the volume of Q times the length
of the maximum fiber in P . This fiber is projecting to a lattice point and P
is hollow, which implies the fiber to have length at most one.
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Thm 1: case “P cannot be projected to a hollow polytope”

Case 2 There is no integer projection of P to a hollow 3-polytope
We use the following lemma:

Lemma
Let π : P → Q be an integer projection of a hollow d-simplex P onto a
non-hollow lattice (d− 1)-polytope Q. Let:

δ be the maximum length of a fiber (π−1 of a point) in P .
0 ≤ r < 1 be the maximum dilation factor such that Q contains a
homothetic hollow copy Qr of itself.

Then:
1 Vol(P ) ≤ δVol(Q).
2 δ−1 ≥ 1− r.

r measures whether Q is “close to hollow” (r ' 1) or “far from hollow” (r ' 0)
In what follows we project P along the direction with δ=diam(P ). Part (2) says “if
Q is far from hollow then diam(P ) is small”
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The Lemma

Qr

Q

P

π

Figure : Projection of an empty (d)-simplex into an (d− 1)-polytope
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The dichotomy

So, let π : P → Q be the projection along the direction giving the diameter
of P , so that the δ in the theorem equals the lattice diameter of P . We
have a dichotomy:
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The dichotomy

So, let π : P → Q be the projection along the direction giving the diameter
of P , so that the δ in the theorem equals the lattice diameter of P . We
have a dichotomy:

If Q is “far from hollow” then we use Minkowski’s First Thm.
Vol(P − P ) ≤ d!2dδd. Together with Vol(P − P ) =

(
2d
d

)
Vol(P )

(Rogers-Shephard for a simplex):

Vol(P ) =
Vol(P − P )(

8
4

) ≤ 24 · 16(
8
4

) δ4 = 5.48δ4.

E.g., with r ≤ 0.81, δ ≤ 1/0.19.

Vol(P ) ≤ 5.48 · δ4 < 4210.
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The dichotomy

So, let π : P → Q be the projection along the direction giving the diameter
of P , so that the δ in the theorem equals the lattice diameter of P . We
have a dichotomy:

If Q is “close to hollow” then we use the Lemma:

Vol(P ) = δVol(Q) =
δ

r3
Vol(Qr), where :

1 r is bounded away from 0: by the previous case we can assume
r ≥ 0.81.

2 Qr is hollow of width at least 3r ≥ 2.5, which implies
Vol(Qr) ≤ 32 53

33 = 148.148 (see next slide).
3 δ ≤ 42 (we skip this).

. . . so we get an upper bound on Vol(P ).
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A bound on the volume of Qr

Proposition (I.V.-Santos, 2018, generalizing Averkov. Krümpelmann
and Weltge. 2015)

Let w ≥ 2.5. Then, the following holds for any lattice-free convex body K
in dimension three of width at least w:
(a)

Vol(K) ≤ 48w3

(w − 1)3
≤ 222.22 . . . .

(b) If K is a lattice 3-polytope with at most five points:

Vol(K) ≤ 32w3

(w − 1)3
≤ 148.148 . . . .
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An upper bound for the volume of empty 4-simplices

Putting the bounds for r ≥ 0.81, Vol(Qr) ≤ 148.148 . . . and δ ≤ 42
together we get:

Vol(P ) ≤ δ

r3
Vol(Qr) ≤ 42

1

0.813
32

53

63
≤ 10751.

But these three bounds are not independent since:
1− r ≤ δ−1 (e.g., if r ' 5/6 then δ . 6).

Vol(Qr) ≤ 32
(

3r
3r−1

)3
(e.g., if r ' 1 then Vol(Qr) ' 108).

Optimizing the three parameters together we get (r ≤ 0.81, δ ≤ 1/0.19).

Vol(P ) ≤ 5058.
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An upper bound for the volume of empty 4-simplices

Summing up:
If P projects to a hollow 3-polytope then

Vol(P ) ≤ 27

If P does not project to a hollow 3-polytope we have the following
cases:

1 Q is “far from hollow” (r ≤ 0.81) then

Vol(P ) ≤ 4210

2 If Q is “close to hollow” (r ≥ 0.81) then

Vol(P ) ≤ 5058
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Theorem 2: Two different enumeration algorithms

To enumerate all empty 4-simplices of a given determinant D we use one
of two algorithms:

Algorithm 1: If D has less than 5 prime factors. It is a complete
enumeration of all posibilitys after fixing one of the facets of the simplex.

Algorithm 2: If D has at least 2 prime factors. Create the simplices by
decomposing the volume D = ab with a and b relatively prime and
combining the simplices with volumes a and b.

For some values of D both algorithms can be used, or different
factorizations of D can be chosen in Algorithm 2. Experimentally, we
observe that Algorithm 2 is much slower than Algorithm 1 if a� b, and
slightly faster than Algorithm 1 if a ' b:
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Computational data

Computation time (sec.) for the list of all empty lattice 4-simplices of a
given determinant
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Part II: Empty 4-simplices of width one and two

We have identified all empty lattice 4-simplices of with greater than two.
How to classify the rest of empty lattice 4-simplices:

Those of width 1 can be classified as they form a 3-parameter family,
similiar to the White Theorem in dimension 3.

conv{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (a, b, V, 1)},
with gcd(a, b, V ) = 1.

Those of width 2: The following work it will be available soon
(hoping...) (I.V.-Santos,’18+)

Theorem (Not true (Barile et al. 2011))
All except for finitely many empty 4-simplices belong to the classes (of
cyclic quotient singularities) classified by Mori-Morrison-Morrison (1988),
and hence have width at most two.

We still have some information of those of width 2.
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We still have some information of those of width 2.
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Part II: Empty 4-simplices of width one and two

We have identified all empty lattice 4-simplices of with greater than two.
How to classify the rest of empty lattice 4-simplices:

Those of width 1 can be classified as they form a 3-parameter family,
similiar to the White Theorem in dimension 3.

conv{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (a, b, V, 1)},
with gcd(a, b, V ) = 1.

Those of width 2: The following work it will be available soon
(hoping...) (I.V.-Santos,’18+)

Theorem (Not true (Barile et al. 2011))
All except for finitely many empty 4-simplices belong to the classes (of
cyclic quotient singularities) classified by Mori-Morrison-Morrison (1988),
and hence have width at most two.

We still have some information of those of width 2.
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Classification of empty 4-simplices

At the end, we have found some new families that can complete the
classification of empty 4-simplices of width 2, and so, the classification of
empty 4-simplices.

Theorem (I.V.-Santos, ’18+)
All except for finitely many empty 4-simplices belong to one of the
following cases:

The three-parameter family of empty 4-simplices of width one.
Two 2-parameter families of empty 4-simplices projecting to the
second dilation of a unimodular triangle (one listed by Mori et al., the
other not).
The 29 Mori 1-parameter families (they project to 29 hollow
"primitive" 3-polytopes).
23 additional 1-parameter families that project to 23 “non-primitive"
hollow 3-polytopes.
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Finitely many empty 4-simplices

At the end, we have found some new families that can complete the
classification of empty 4-simplices of width 2, and so, the classification of
empty 4-simplices.

Theorem (I.V.-Santos, ’18+)
There are exactly 2461 (classes of) empty 4-simplices that do not belong
to any of the infinite families shown in the theorem before. These empty
4-simplices correspond to those that do not project to a hollow
d− 1-polytope. Their determinants range from 24 to 419.

Remark
The empty 4-simplices of width greater than 3 explicity discribed in Part I
of this talk are 180 cases of these 2461.
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Thanks for your attention

The article for part I you can check it in arXiv:1704.07299 and also
accepted for publication in TAMS

Supported by grants MTM2011-22792; BES-2012-058920 of the Spanish
Ministry of Science

email: oscar.iglesias@unican.es
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