Enumerative Combinatorics from an Algebraic-Geometric point of view

Christos Athanasiadis

University of Athens

March 22, 2018
Outline

1 Three examples from combinatorics

2 An algebraic-geometric perspective

3 Gamma-positivity
Eulerian polynomials

We let

- \(\mathcal{S}_n \) be the group of permutations of \([n] := \{1, 2, \ldots, n\}\)

and for \(w \in \mathcal{S}_n \)

- \(\text{des}(w) := \# \{ i \in [n-1] : w(i) > w(i + 1) \} \)
- \(\text{exc}(w) := \# \{ i \in [n-1] : w(i) > i \} \)

be the number of descents and excedances of \(w \), respectively. The polynomial

\[
A_n(x) := \sum_{w \in \mathcal{S}_n} x^{\text{des}(w)} = \sum_{w \in \mathcal{S}_n} x^{\text{exc}(w)}
\]

is the \(n \)th Eulerian polynomial.
Example

\[A_n(x) = \begin{cases}
1, & \text{if } n = 1 \\
1 + x, & \text{if } n = 2 \\
1 + 4x + x^2, & \text{if } n = 3 \\
1 + 11x + 11x^2 + x^3, & \text{if } n = 4 \\
1 + 26x + 66x^2 + 26x^3 + x^4, & \text{if } n = 5 \\
1 + 57x + 302x^2 + 302x^3 + 57x^4 + x^5, & \text{if } n = 6.
\end{cases} \]
Derangement polynomials

We let

- \mathcal{D}_n be the set of derangements (permutations without fixed points) in the symmetric group \mathfrak{S}_n.

For instance,

- $\mathcal{D}_3 = \{(2, 3, 1), (3, 1, 2)\}$.

The polynomial

$$d_n(x) := \sum_{w \in \mathcal{D}_n} x^{\text{exc}(w)}$$

is the nth derangement polynomial.
Example

\[d_n(x) = \begin{cases}
0, & \text{if } n = 1 \\
x, & \text{if } n = 2 \\
x + x^2, & \text{if } n = 3 \\
x + 7x^2 + x^3, & \text{if } n = 4 \\
x + 21x^2 + 21x^3 + x^4, & \text{if } n = 5 \\
x + 51x^2 + 161x^3 + 51x^4 + x^5, & \text{if } n = 6 \\
x + 113x^2 + 813x^3 + 813x^4 + 113x^5 + x^6, & \text{if } n = 7.
\]
Binomial Eulerian polynomials

The polynomial

$$\tilde{A}_n(x) := 1 + x \sum_{k=1}^{n} \binom{n}{k} A_k(x) = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} A_k(x)$$

is the \(n\)th binomial Eulerian polynomial.

Example

$$\tilde{A}_n(x) = \begin{cases}
1 + x, & \text{if } n = 1 \\
1 + 3x + x^2, & \text{if } n = 2 \\
1 + 7x + 7x^2 + x^3, & \text{if } n = 3 \\
1 + 15x + 33x^2 + 15x^3 + x^4, & \text{if } n = 4 \\
1 + 31x + 131x^2 + 131x^3 + 31x^4 + x^5, & \text{if } n = 5 \\
1 + 63x + 473x^2 + 883x^3 + 473x^4 + 63x^5 + x^6, & \text{if } n = 6.
\end{cases}$$
Note: All these polynomials are symmetric and unimodal. There is an endless list of generalizations, refinements and variations with similar properties.
Symmetry and unimodality

Definition

A polynomial \(f(x) \in \mathbb{R}[x] \) is

- symmetric (or palindromic) and
- unimodal

if for some \(n \in \mathbb{N} \),

\[
f(x) = p_0 + p_1 x + p_2 x^2 + \cdots + p_n x^n
\]

with

- \(p_k = p_{n-k} \) for \(0 \leq k \leq n \) and
- \(p_0 \leq p_1 \leq \cdots \leq p_{\lfloor n/2 \rfloor} \).

The number \(n/2 \) is called the center of symmetry.
Question: Can algebra or geometry shed light into such phenomena?
We let

- \(\Delta \) be a simplicial complex of dimension \(n - 1 \)
- \(f_i(\Delta) \) be the number of \(i \)-dimensional faces.

Definition

The \(h \)-polynomial of \(\Delta \) is defined as

\[
h(\Delta, x) = \sum_{i=0}^{n} f_{i-1}(\Delta) x^i (1 - x)^{n-i} = \sum_{i=0}^{n} h_i(\Delta) x^i.
\]

The sequence \(h(\Delta) = (h_0(\Delta), h_1(\Delta), \ldots, h_n(\Delta)) \) is the \(h \)-vector of \(\Delta \).

Note: \(h(\Delta, 1) = f_{n-1}(\Delta) \).
Example

For the 2-dimensional complex

\[\Delta = \]

we have \(f_0(\Delta) = 8 \), \(f_1(\Delta) = 15 \) and \(f_2(\Delta) = 8 \) and hence

\[
h(\Delta, x) = (1 - x)^3 + 8x(1 - x)^2 + 15x^2(1 - x) + 8x^3
\]

\[
= 1 + 5x + 2x^2.
\]
Example

The boundary complex Σ_n of the n-dimensional cross-polytope is a triangulation of the $(n - 1)$-dimensional sphere:

We have

$$h(\Sigma_n, x) = (1 + x)^n$$

for every $n \geq 1$.
The face ring

We let

- m be the number of vertices of Δ
- k be a field
- $S = k[x_1, x_2, \ldots, x_m]$
- $I_\Delta = \langle \prod_{i \in F} x_i : F \notin \Delta \rangle$ be the Stanley–Reisner ideal of Δ

$$k[\Delta] = S/I_\Delta$$

be the Stanley–Reisner ring (or face ring) of Δ.

Then $k[\Delta]$ is a graded k-algebra with Hilbert series

$$\sum_{i \geq 0} \dim_k(k[\Delta]_i) t^i = \frac{h(\Delta, t)}{(1 - t)^n},$$

where $n - 1 = \dim(\Delta)$.
Theorem (Klee, Reisner, Stanley)

The polynomial $h(\Delta, x)$:

- has nonnegative coefficients if Δ triangulates a ball or a sphere,
- is symmetric if Δ triangulates a sphere,
- is unimodal if Δ is the boundary complex of a simplicial polytope.

Note: If Δ triangulates a ball or a sphere (more generally, if Δ is Cohen–Macaulay over k), then there exists a graded quotient $k(\Delta)$ of $k[\Delta]$ such that $h_i(\Delta) = \dim_k(k(\Delta)_i)$ for every i.
We let

- \(V \) be an \(n \)-element set,
- \(2^V \) be the simplex on the vertex set \(V \),
- \(\Delta \) be the first barycentric subdivision of the boundary complex of \(2^V \).

Then \(h(\Delta, x) = A_n(x) \).
Example

For $n = 3$

\[
\Delta = h(\Delta, x) = (1 - x)^2 + 6x(1 - x) + 6x^2 = 1 + 4x + x^2.
\]
The local h-polynomial

We let

- V be an n-element set,
- Γ be a triangulation of the simplex 2^V on the vertex set V.

Definition (Stanley, 1992)

The local h-polynomial of Γ (with respect to V) is defined as

$$\ell_V(\Gamma, x) = \sum_{F \subseteq V} (-1)^{n-|F|} h(\Gamma_F, x),$$

where Γ_F is the restriction of Γ to the face F of the simplex 2^V.

Note: This polynomial plays a major role in Stanley’s theory of subdivisions of simplicial (and more general) complexes.
Example

For the 2-dimensional triangulation

$$
\Gamma = \begin{align*}
&\end{align*}
$$

we have

$$
\ell_V(\Gamma, x) = (1 + 5x + 2x^2) - (1 + 2x) - (1 + x) - 1 + 1 + 1 + 1 - 1 = 2x + 2x^2.
$$
Theorem (Stanley, 1992)

The polynomial \(\ell_V(\Gamma, x) \)

- is symmetric,
- has nonnegative coefficients,
- is unimodal for every regular triangulation \(\Gamma \) of \(2^V \).

Note: Stanley showed that there exists a graded \(S \)-module \(L_V(\Gamma) \) whose Hilbert series equals \(\ell_V(\Gamma, x) \).
Barycentric subdivision

For the barycentric subdivision Γ of the simplex 2^V on the vertex set V

Stanley showed that

$$\ell_V(\Gamma, x) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} A_k(x) = \sum_{w \in D_n} x^{\text{exc}(w)} = d_n(x).$$
We now turn attention to $\tilde{A}_n(x)$. We let

- V be an n-element set,
- Γ be a triangulation of the simplex 2^V on the vertex set V.

Then, there exists a triangulation $\Sigma(\Gamma)$ of Σ_n which restricts to Γ on one facet of Σ_n and satisfies

$$h(\Sigma(\Gamma), x) = \sum_{F \subseteq V} x^{n-|F|} h(\Gamma_F, x).$$
Example

For the barycentric subdivision Γ of 2^V we have

$$h(\Sigma(\Gamma), x) = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} A_k(x) = \tilde{A}_n(x).$$
Recall that the link of a simplicial complex Δ at a face $F \in \Delta$ is defined as $\text{link}_\Delta(F) := \{ G \setminus F : F \subseteq G \in \Delta \}$.

Proposition (Stanley, 1992)

For every triangulation Δ' of a pure simplicial complex Δ,

$$h(\Delta', x) = \sum_{F \in \Delta} \ell_F(\Delta'_F, x) h(\text{link}_\Delta(F), x).$$
An application

We let again

- V be an n-element set,
- Γ be a triangulation of the simplex 2^V on the vertex set V.

Theorem (Kubitzke–Murai–Sieg, 2017)

$$\ell_V(\Gamma, x) = \sum_{F \subseteq V} (h(\Gamma_F, x) - h(\partial(\Gamma_F), x)) \cdot d_{n-|F|}(x).$$
Corollary (Kubitzke–Murai–Sieg, 2017)

We have

\[d_n(x) = \sum_{k=0}^{n-2} \binom{n}{k} d_k(x)(x + x^2 + \cdots + x^{n-1-k}) \]

for \(n \geq 2 \). In particular, \(d_n(x) \) is symmetric and unimodal for all \(n \).
Question: Are there nice (symmetric and unimodal) analogues of Eulerian, derangement and binomial Eulerian polynomials for the hyperoctahedral group?
Eulerian polynomials of type B_n

We let

- $B_n = \{w = (w(1), w(2), \ldots, w(n)) : |w| \in S_n\}$ be the group of signed permutations of $[n]$
- Δ be the first barycentric subdivision of the boundary complex of the n-dimensional cube.

Then, $h(\Delta, 1) = 2^n n! = \#B_n$.
Moreover,

\[h(\Delta, x) = B_n(x) := \sum_{w \in B_n} x^{\text{des}_B(w)} \]

where

- \(\text{des}_B(w) := \# \{ i \in \{0, 1, \ldots, n - 1\} : w(i) > w(i + 1) \} \)

for \(w \in B_n \) as before, with \(w(0) := 0 \).

Example

\[
B_n(x) = \begin{cases}
1 + x, & \text{if } n = 1 \\
1 + 6x + x^2, & \text{if } n = 2 \\
1 + 23x + 23x^2 + x^3, & \text{if } n = 3 \\
1 + 76x + 230x^2 + 76x^3 + x^4, & \text{if } n = 4 \\
1 + 237x + 1682x^2 + 1682x^3 + 237x^4 + x^5, & \text{if } n = 5.
\end{cases}
\]
More barycentric subdivisions

We let

- \mathcal{V} be an n-element set,
- \mathcal{K} be the barycentric subdivision of the cubical barycentric subdivision of $2^\mathcal{V}$.

Example

$n = 3$
Consider the polynomial

\[d_n^+(x) = \ell_V(K, x). \]

Example

\[
\begin{align*}
 d_n^+(x) &= \begin{cases}
 0, & \text{if } n = 1 \\
 3x, & \text{if } n = 2 \\
 7x + 7x^2, & \text{if } n = 3 \\
 15x + 87x^2 + 15x^3, & \text{if } n = 4 \\
 31x + 551x^2 + 551x^3 + 31x^4, & \text{if } n = 5 \\
 63x + 2803x^2 + 8243x^3 + 2803x^4 + 63x^5, & \text{if } n = 6.
 \end{cases}
\end{align*}
\]

Note: The sum of the coefficients of \(d_n^+(x) \) is equal to the number of even-signed derangements (signed permutations without fixed points of positive sign) in \(B_n \).
For \(w = (w_1, w_2, \ldots, w_n) \in B_n \) we let

\[
\text{fex}(w) = 2 \cdot \text{exc}_A(w) + \text{neg}(w),
\]

where

- \(\text{exc}_A(w) := \# \{i \in [n-1] : w(i) > i\} \)
- \(\text{neg}(w) := \# \{i \in [n] : w(i) < 0\} \).

Theorem (A, 2014)

We have

\[
d_n^+(x) = \sum_{w \in D_n^+} x^{\text{fex}(w)/2}
\]

where \(D_n^+ \) is the set of even-signed derangements in \(B_n \).
We now consider the polynomial

\[\tilde{B}_n^+(x) := h(\Sigma(K), x). \]

Savvidou showed that

\[h(K, x) = B_n^+(x) := \sum_{w \in B_n^+} x^{\text{des}_B(w)} \]

where \(B_n^+ \) is the set of \(w \in B_n \) with positive last coordinate. Hence,

\[\tilde{B}_n^+(x) = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} B_k^+(x) = h(\Sigma(K), x) \]

is a symmetric and unimodal analogue of \(\tilde{A}_n(x) \) for the group \(B_n \).
Example

\[\tilde{B}_n^+(x) = \begin{cases}
1 + x, & \text{if } n = 1 \\
1 + 5x + x^2, & \text{if } n = 2 \\
1 + 19x + 19x^2 + x^3, & \text{if } n = 3.
\]
Symmetric functions

We let

- \(x = (x_1, x_2, x_3, \ldots) \) be a sequence of commuting indeterminates,
- \(h_n(x) \) be the complete homogeneous symmetric function in \(x \) of degree \(n \), defined by
 \[
 H(x, z) := \sum_{n \geq 0} h_n(x)z^n = \prod_{i \geq 1} \frac{1}{1 - x_i z},
 \]
- \(s_\lambda(x) \) be the Schur function in \(x \) corresponding to the partition \(\lambda \).
We define polynomials $R_\lambda(t), P_\lambda(t), Q_\lambda(t)$ by

$$
\frac{1 - t}{H(x; tz) - tH(x; z)} = \sum_\lambda R_\lambda(t) s_\lambda(x) z^{\lambda},
$$

$$
\frac{(1 - t)H(x, z)}{H(x; tz) - tH(x; z)} = \sum_\lambda P_\lambda(t) s_\lambda(x) z^{\lambda},
$$

and

$$
\frac{(1 - t)H(x, z)H(x, tz)}{H(x; tz) - tH(x; z)} = \sum_\lambda Q_\lambda(t) s_\lambda(x) z^{\lambda}.
$$

Note: The left-hand sides of these equations arise from algebraic-geometric and representation-theoretic considerations.
Note: We have

\[\sum_{\lambda \vdash n} f^\lambda R_\lambda(t) = d_n(t), \]
\[\sum_{\lambda \vdash n} f^\lambda P_\lambda(t) = A_n(t) \]

and

\[\sum_{\lambda \vdash n} f^\lambda Q_\lambda(t) = \tilde{A}_n(t), \]

where \(f^\lambda \) is the number of standard Young tableaux of shape \(\lambda \).
Theorem (Brenti, Gessel, Shareshian–Wachs, Stanley)

The polynomials $R_\lambda(t)$, $P_\lambda(t)$ and $Q_\lambda(t)$ are symmetric and unimodal, with centers of symmetry $n/2$, $(n - 1)/2$ and $n/2$, respectively, for every $\lambda \vdash n$. Moreover, there exist nonnegative integers $\xi_{\lambda,i}$, $\gamma_{\lambda,i}$ and $\tilde{\gamma}_{\lambda,i}$ such that

\[
R_\lambda(t) = \sum_{i=0}^{\lfloor n/2 \rfloor} \xi_{\lambda,i} t^i (1 + t)^{n-2i},
\]

\[
P_\lambda(t) = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} \gamma_{\lambda,i} t^i (1 + t)^{n-1-2i},
\]

\[
Q_\lambda(t) = \sum_{i=0}^{\lfloor n/2 \rfloor} \tilde{\gamma}_{\lambda,i} t^i (1 + t)^{n-2i}.
\]
Gamma-positivity

Proposition (Bränden, 2004, Gal, 2005)

Suppose $f(x) \in \mathbb{R}[x]$ has nonnegative coefficients and only real roots and that it is symmetric, with center of symmetry $n/2$. Then,

$$f(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} \gamma_i x^i (1 + x)^{n-2i}$$

for some nonnegative real numbers $\gamma_0, \gamma_1, \ldots, \gamma_{\lfloor n/2 \rfloor}$.

Definition

The polynomial $f(x)$ is called γ-positive if there exist nonnegative real numbers $\gamma_0, \gamma_1, \ldots, \gamma_{\lfloor n/2 \rfloor}$ as above, for some $n \in \mathbb{N}$.
Thus, $A_n(x)$, $d_n(x)$ and $\tilde{A}_n(x)$ are γ-positive for all n.

Example

$$A_n(x) = \begin{cases}
1, & \text{if } n = 1 \\
1 + x, & \text{if } n = 2 \\
(1 + x)^2 + 2x, & \text{if } n = 3 \\
(1 + x)^3 + 8x(1 + x), & \text{if } n = 4 \\
(1 + x)^4 + 22x(1 + x)^2 + 16x^2, & \text{if } n = 5 \\
(1 + x)^5 + 52x(1 + x)^3 + 186x^2(1 + x), & \text{if } n = 6.
\end{cases}$$

Note: Every γ-positive polynomial (even if it has nonreal roots) is symmetric and unimodal.
An index \(i \in [n] \) is called a **double descent** of a permutation \(w \in \mathfrak{S}_n \) if

\[
w(i - 1) > w(i) > w(i + 1),
\]

where \(w(0) = w(n + 1) = n + 1 \).

Theorem (Foata–Schützenberger, 1970)

We have

\[
A_n(x) = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} \gamma_{n,i} x^i (1 + x)^{n-1-2i},
\]

where \(\gamma_{n,i} \) is the number of \(w \in \mathfrak{S}_n \) which have no double descent and \(\text{des}(w) = i \). In particular, \(A_n(x) \) is symmetric and unimodal.
Recently, gamma-positivity attracted attention after the work of

- Bränden (2004, 2008) on P-Eulerian polynomials,

Expositions can be found in:

Note: Γ-positivity is known to hold for

- $B_n(x)$, $d_n^+(x)$ and $\tilde{B}_n^+(x)$

for all n.

Example

$$B_n(x) = \begin{cases}
1 + x, & \text{if } n = 1 \\
(1 + x)^2 + 4x, & \text{if } n = 2 \\
(1 + x)^3 + 20x(1 + x), & \text{if } n = 3 \\
(1 + x)^4 + 72x(1 + x)^2, & \text{if } n = 4 \\
(1 + x)^5 + 232x(1 + x)^3 + 976x^2(1 + x), & \text{if } n = 5 \\
(1 + x)^6 + 716x(1 + x)^4 + 7664x^2(1 + x)^2, & \text{if } n = 6.
\end{cases}$$
Flag complexes and Gal’s conjecture

Definition
A simplicial complex Δ is called flag if it contains every simplex whose 1-skeleton is a subcomplex of Δ.

Example

- Not flag
- Flag
Example

For a 1-dimensional sphere Δ with m vertices we have

$$h(\Delta, x) = 1 + (m - 2)x + x^2.$$

Note that $h(\Delta, x)$ is γ-positive \iff $m \geq 4 \iff \Delta$ is flag.

Conjecture (Gal, 2005)

The polynomial $h(\Delta, x)$ is γ-positive for every flag triangulation Δ of the sphere.

Note: This extends a conjecture of Charney–Davis (1995).

Example

The complex Σ_n is a flag and $h(\Sigma_n, x) = (1 + x)^n$ for every $n \geq 1$.
Conjecture (A, 2012)

The polynomial $\ell_V(\Gamma, x)$ is γ-positive for every flag triangulation Γ of 2^V.

Note: This is stronger than Gal’s conjecture. There is considerable evidence for both conjectures.
We recall our notation $\Sigma(\Gamma)$ and note that the formula

$$h(\Sigma(\Gamma), x) = \sum_{F \subseteq V} x^{n-|F|} h(\Gamma_F, x)$$

may be rewritten as

$$h(\Sigma(\Gamma), x) = \sum_{F \subseteq V} \ell_F(\Gamma_F, x) (1 + x)^{n-|F|}.$$

Corollary

The γ-positivity of $h(\Sigma(\Gamma), x)$ is implied by that of the $\ell_F(\Gamma_F, x)$. In particular:

- The γ-positivity of $\widetilde{A}_n(x)$ follows from that of $d_n(x)$.
- The γ-positivity of $\widetilde{B}_n^+(x)$ follows from that of $d_n^+(x)$.

The analogue

\[
\frac{(1 - t)H(x, z)H(x, tz)}{H(x; tz)H(y; tz) - tH(x; z)H(y; tz)} = \sum_{\lambda, \mu} P_{\lambda, \mu}(t)s_\lambda(x)s_\mu(y) z^{|\lambda| + |\mu|}
\]

for the group \(B_n\) of

\[
\frac{(1 - t)H(x, z)}{H(x; tz) - tH(x; z)} = \sum_{\lambda} P_\lambda(t)s_\lambda(x) z^{|\lambda|}
\]

was found by Dolgachev–Lunts and Stembridge (1994). We then have

\[
\sum_{(\lambda, \mu) \vdash n} \binom{n}{|\lambda|} f^\lambda f^\mu P_{\lambda, \mu}(t) = B_n(t)
\]

for every \(n \geq 1\).
Open Problem:

- Find the analogues of the identities involving R_λ and Q_λ for B_n.
- Find a combinatorial interpretation for $P_{\lambda,\mu}(t)$.
- Prove that the polynomials $P_{\lambda,\mu}(t)$ are γ-positive.
Consider the second barycentric subdivision Γ^2 of the simplex 2^V.

One can show that

$$\ell_V(\Gamma^2, x) = \sum \binom{n}{r_0, r_1, \ldots, r_k} d_k(x) d_{r_0}(x) A_{r_1}(x) \cdots A_{r_k}(x),$$

where the sum ranges over all $k \geq 0$ and over all sequences (r_0, r_1, \ldots, r_k) of integers which satisfy $r_0 \geq 0$, $r_1, \ldots, r_k \geq 1$ and sum to n.
Note: This implies the γ-positivity of $\ell_V(\Gamma^2, x)$.

Exercise: The sum of the coefficients of $\ell_V(\Gamma^2, x)$ is equal to the number of pairs $(u, v) \in S_n \times S_n$ of permutations with no common fixed point.

Open Problem: Find a combinatorial interpretation for:

- $\ell_V(\Gamma^2, x)$,
- the corresponding γ-coefficients.
Thank you for your attention!