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Sequential Distributed Phosphorylations

A+ EE —— AR %Ap—l—El

AP+E2 (:>APE2 *>A+E2
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Ao+ E == A, — A+E

@ Assume that A, E;, ... are in some isolated, homogeneous reactor fR.

Law of mass action

The rate of a chemical reaction is directly proportional to the product of
concentrations of the reactants.
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Eg.. From 1—site Phosphorylation to polynomial Rings

A1) & AE] —2 [A,] [E]

A [E:] == [ApEs] — " [A][E2]

@ Assume that A, E;, ... are in some isolated, homogeneous reactor fR.

Law of mass action
The rate of a chemical reaction is directly proportional to the product of

concentrations of the reactants.

Denote: [A] = X1, [El] = X2, [AEl] = X3, [Ap] = Xq, [EQ] = Xs, [APEZ] = Xp.
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Eg.. From 1—site Phosphorylation to polynomial Rings
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Eg.. From 1—site Phosphorylation to polynomial Rings

ki k3
X1X2 <k—> X3 " X2X4
2

@ Trajectory:

X1 = —kixixo + koxs + keXe
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Eg.. From 1—site Phosphorylation to polynomial Rings

ki k3

X1X2 <T X3 ’ X2X4
2
ks ke

X4X5 <T> X6 ? X1Xs5
5

o Trajectory:
x1 = —kixixo + koxz + kexe
XQ = —k1X1X2 + k2X3 + k3X3
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Eg.. From 1—site Phosphorylation to polynomial Rings

K ks

ks ke

~

o Trajectory:

x1 = —kix1xo + koxz + kexp
XQ = —k1X1X2 + k2X3 + k3X3
x3 = kix1xp — koxz — k3x3
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Eg.. From 1—site Phosphorylation to polynomial Rings

@ Trajectory:
X1 = —kixixo + koxs + keXe
X2 = —kix1xo + koxz + k3x3
x3 = kixix2 — kaxz — k3x3
X4 = k3xz — kaxqxs + ksxp
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Eg.. From 1—site Phosphorylation to polynomial Rings

k1 \ k3 \
X1X (Tf X3 7 XoXy
2

Ky ke
X4Xsg <T X6 ’ X1Xs5
5

o Trajectory:
X1 = —kix1xo + koxz + kexg
Xz = —k1X1X2 + k2X3 + k3X3
x3 = kix1xp — koxs — k3x3
X4 = k3X3 — k4X4X5 + k5X5
Xs = —Kaxaxs + ksxg + koo
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Eg.. From 1—site Phosphorylation to polynomial Rings

K ks

X1 X2 <T> X3 ” XoX4
2
ka ke

X4X6 3= — X6 ’ X1X5
5

o Trajectory:
X1 = —kix1x2 + koxz + kexp
Xz = —k1X1X2 + k2X3 + k3X3
x3 = kix1xp — koxs — k3x3
X4 = k3X3 — k4X4X5 + k5X5
X5 = —kaxaxs + ksxg + ko6
Xﬁ = k4X4X5 — k5X6 — k6X5
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Eg.. From 1—site Phosphorylation to polynomial Rings

ky k3

X1X2 <T> X3 " X2X4
2
kq ke

X4 X5 <T X6 ’ X1X5
5

o Trajectory:
Xl = —k1X1X2 + k2X3 + k6X6
Xp = —kixi1xo + kox3 + k3x3
X3 = k1X1X2 — k2X3 — k3X3
X4 = k3x3 — kaxaxs + ksxp
x5 = —kaxaxs + ksXg + keXe
).(6 = k4X4X5 — k5X6 — k6X6

A. losif

e Steady States (x; = 0):
0 = —kix1xo + koxz + ksxs
0 = —kixixo + koxz + k3x3
0= k1X1X2 - k2X3 — k3X3
0 = k3xz — kaxaxs + ksxe
0 = —kaxaxs + ksxe + kexe
0= k4X4X5 - k5X6 — k6X6
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Eg.. From 1—site Phosphorylation to polynomial Rings

@ Trajectory:
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Macaulay2 Experiment 1

i1

: needsPackage("Binomials");
i2 :
i3 :

id .
od :

i5

o5

i6 :

06

K=QQ[k_1..k_6]; R=K[x_1..x_6];

I=ideal (-k_1#*x_1*x_2+k_2%x_3+k_6%*x_6,
—k_1*x_1*xx_2+k_2%x_3+k_3*x_3,
k_1xx_1*x_2-k_2*x_3-k_3*x_3,
k_3*x_3-k_4*x_4xx_b+k_b*x_6,
-k_4xx_4%x_b+k_5b*xx_6+k_6%*x_6,
k_4*xx_4*x_5-k_5*x_6-k_6%*x_6) ;

associatedPrimes I

{ideal (k_3*x_3-k_6%*x_6,

k_4xx_4xx_b+(-k_5-k_6)*x_6,

k_1*x_1*x_2-k_2*x_3-k_6*x_6)}

isBinomial I

false

gens gb I

| x_3k_3-x_6k_6 x_4x_bk_4-x_6k_b5-x_6k_6
x_1x_2k_1-x_3k_2-x_6k_6 |

A. losif The isolation property Osnabriick, March 23, 2018



Macaulay2 Experiment 2

il : needsPackage("Binomials");

i2 : K=frac(QQ[k_1..k_6]1); R=K[x_1..x_6];

i3 : I=ideal(-k_1*x_1*x_2+k_2*x_3+k_6*x_6,
—k_1*xx_1*xx_2+k_2*x_3+k_3*x_3,
k_1*x_1*x_2-k_2*x_3-k_3%*x_3,
k_3*xx_3-k_4*x_4*x_5b+k_b*x_6,
-k_4*x_4xx_b+k_b*x_6+k_6*x_6,
k_4xx_4*x_5-k_b*x_6-k_6%*x_6) ;

i4 : associatedPrimes I

stdio:4:1:(3): error: expected base field to be QQ or ZZ/p

i5 : isBinomial I

o5 true

i6 : gens gb I

o6 | x_3-k_6/k_3x_6 x_4x_5+(-k_5-k_6)/k_4x_6
x_1x_2+(-k_2k_6-k_3k_6)/k_1k_3x_6 |
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Example: From 1—site Phosphorylation to Rings

o Let f; € Q(k)[x] denote the right hand side of X;, i € [6].
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Example: From 1—site Phosphorylation to Rings

o Let f; € Q(k)[x] denote the right hand side of X;, i € [6].
o Let | :=(f1,...,fs). We observe that / is binomial.
o Let V:={x € R®: f(x)=0, Vf €I},

VZO = VﬂRﬁzo and Vg := VﬂRgO.
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Example: From 1—site Phosphorylation to Rings

Let f; € Q(k)[x] denote the right hand side of x;, i € [6].
Let / := (f1,...,fs). We observe that / is binomial.

Let V:={x € RO : f(x) =0, Vf €},

Vo = VOR‘;O and Vg := VHR‘;O.

@ As | is binomi:i, the Zariski closure of V< is toric.

A. losif The isolation property Osnabriick, March 23, 2018



Example: From 1—site Phosphorylation to Rings

Let f; € Q(k)[x] denote the right hand side of x;, i € [6].
Let / := (f1,...,fs). We observe that / is binomial.

Let V:={x € R®: f(x) =0, Vf €I},

Vo = VHR‘;O and Vg := VHR‘;O.

As | is binomi:;, the Zariski closure of V< is toric.

Therefore V<o has a monomial parametrization:

6\ K2 3 t3 6 5 6t3
t1, b, t — —_—— 1, — —, b, t .
(17 2, 3) < k]_k3 tl, 1, k3 3 k t27 2, 3)
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When does V-y have a monomial parametrization?

@ The concentrations are non-negative numbers, so we are only
interested in elements of V.
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interested in elements of V.

@ For many practical purposes only the strictly positive zeros of I are
relevant (i.e. the elements of V).
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@ The concentrations are non-negative numbers, so we are only
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@ For many practical purposes only the strictly positive zeros of I are
relevant (i.e. the elements of V).

@ When does V-~ have a monomial parametrization?
e By studying the associated primes of | we could answer this question.
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e By studying the associated primes of | we could answer this question.
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interested in elements of V.

@ For many practical purposes only the strictly positive zeros of I are
relevant (i.e. the elements of V).
@ When does V-~ have a monomial parametrization?
e By studying the associated primes of | we could answer this question.

@ Primary decomposition is computationally expensive.
@ Not even implemented in Macaualay?2 for rings like Q(k)[x].
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When does V-y have a monomial parametrization?

@ The concentrations are non-negative numbers, so we are only
interested in elements of V.

@ For many practical purposes only the strictly positive zeros of I are
relevant (i.e. the elements of V).
@ When does V-~ have a monomial parametrization?
e By studying the associated primes of | we could answer this question.

@ Primary decomposition is computationally expensive.
@ Not even implemented in Macaualay?2 for rings like Q(k)[x].

o Look at simpler cases (e.g., systems with the isolation property)
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The kernel of the stoichiometric matrix

@ Let AV be a network on arrows ki, ..., k,, and species xi,...Xx,.
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@ Let S denote the stoichiometric matrix of AV .
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The kernel of the stoichiometric matrix

@ Let AV be a network on arrows ki, ..., k,, and species xi,...Xx,.
@ Let S denote the stoichiometric matrix of V.

o Let ¢(k,x) = (kima, ..., k:m,)T where m; is the source of k;, i € [r].
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The kernel of the stoichiometric matrix

Let ' be a network on arrows ki, ..., k,, and species xi,...Xx,.

Let S denote the stoichiometric matrix of N.

Let ¢(k,x) := (kumy,. .., k-m,)T where m; is the source of k;,i € [r].
The kynetics of A is given by x = S¢(k, x).

If x* is a steady state for the particular value k* of k, then
p(k*, x*) € ker(S) NRE,,.

A. losif The isolation property Osnabriick, March 23, 2018 11 /18



The kernel of the stoichiometric matrix

Let ' be a network on arrows ki, ..., k,, and species xi,...Xx,.

Let S denote the stoichiometric matrix of A/.

Let ¢(k,x) := (kumy,. .., k-m,)T where m; is the source of k;,i € [r].
The kynetics of A is given by x = S¢(k, x).

If x* is a steady state for the particular value k* of k, then

d(k*, x*) € ker(S) NRL,.

@ Let E be a matrix whoge columns are the extreme rays of

ker(S) NRL,. Let nj denote the /™ row of E.
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The kernel of the stoichiometric matrix

Let ' be a network on arrows ki, ..., k,, and species xi,...Xx,.
Let S denote the stoichiometric matrix of A
Let ¢(k,x) := (kumy,. .., k-m,)T where m; is the source of k;,i € [r].

The kynetics of A is given by x = S¢(k, x).

If x* is a steady state for the particular value k* of k, then

p(k*, x*) € ker(S) NRE,,.

@ Let E be a matrix whose columns are the extreme rays of
ker(S) NRL,. Let nj denote the /™ row of E.

o If E has p columns, let A(E) := {A € RZ,: EX > 0}.

A. losif The isolation property Osnabriick, March 23, 2018



Clustering the reactions

o A superdoubling set is a maximal subset & of [r], [&] > 2, whose
elements index arrows with the same source.
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Clustering the reactions

o A superdoubling set is a maximal subset & of [r], [&] > 2, whose
elements index arrows with the same source.

o A precluster is a subset of [r] indexing those rows of E which lie in
the span of the rows of E indexed by a superdoubling set.
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Clustering the reactions

o A superdoubling set is a maximal subset & of [r], [&] > 2, whose
elements index arrows with the same source.

o A precluster is a subset of [r] indexing those rows of E which lie in
the span of the rows of E indexed by a superdoubling set.

@ Let PR denote the union of all preclusters.

@ A cluster is an element of the maximal partition of R induced by the
preclusters.
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Mass action networks with the isolation property

Definition

A mass action network has the isolation property when the rows of E
indexed by different clusters have disjoint supports.
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Mass action networks with the isolation property

A mass action network has the isolation property when the rows of E
indexed by different clusters have disjoint supports.

| \

Theorem [2017; Conradi, ., Kahle]

If a mass action network A/ has the isolation property, then the set of
positive steady states V< of A/ has a monomial parametrization.
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|dea of the proof (definitions)

o Let ) denote the matrix whose it" column is the exponent vector of
the source of the /" arrow.
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the source of the /" arrow.

o If {i,j} is a superdoubling set, then e; — e € ker()), where
{e1,..., e/} is the cannonical basis of R".
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o Let ) denote the matrix whose it" column is the exponent vector of
the source of the /" arrow.

o If {i,j} is a superdoubling set, then e; — e € ker()), where
{e1,..., e/} is the cannonical basis of R".

o Let Ud°ub denote a matrix with r rows which has a column e; — ej for
each superdoubling set {/,}.
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|dea of the proof (definitions)

o Let ) denote the matrix whose it" column is the exponent vector of
the source of the it" arrow.

o If {i,j} is a superdoubling set, then e; — e € ker()), where
{e1,..., e/} is the cannonical basis of R".

o Let Ud°ub denote a matrix with r rows which has a column e; — ej for
each superdoubling set {/,}.

o Let U denote a matrix such that the columns of (Ud°“b|0) span

ker(Y).
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|dea of the proof

Lemma | [2010; Conradi, Flockerzi]

If i and j belong to the same cluster J, then
log (;’:—K) = log (%) = 1y(v, A) for all v, A € A(E).

A. losif The isolation property Osnabriick, March 23, 2018 15 / 18



|dea of the proof

Lemma | [2010; Conradi, Flockerzi]

If i and j belong to the same cluster J, then
log (;’:—K) = log (%) = 1y(v, A) for all v, X\ € A(E).

Definition
If NV has 7 clusters, Ji, ..., J,, let:

<
\

v N(E) — RY
(V7)‘) = (¢J1(V7)‘)a"'vaw(Vv)‘))'

A\
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|dea of the proof

Lemma | [2010; Conradi, Flockerzi]

If i and j belong to the same cluster J, then
log (Z:—K) = log (%) = 1y(v, A) for all v, X\ € A(E).

<
\

Definition
If NV has 7 clusters, Ji, ..., J,, let:

v N(E) — RY
(V7)‘) = (¢J1(V7)‘)7"'va»Y(V7)‘))'

A\

Lemma Il [2010; Conradi, Flockerzi]

If N has the isolation property then im is a linear space.
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|dea of the proof

Let M € {0,1}7*7 be such that the support of its i*" column is J;
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|dea of the proof

Let M € {0,1}7*7 be such that the support of its i*" column is J;.

Lemma Il [2010; Conradi, Flockerzi]

There are two positive steady states x* # x** with and common k* if and
only if 3x € imy with YT (log(x**) — log(x*)) = Nk and UT Mk = 0.
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|dea of the proof

Let M € {0,1}7*7 be such that the support of its i*" column is J;.

Lemma Il [2010; Conradi, Flockerzi]

There are two positive steady states x* # x** with and common k* if and
only if 3x € imy with YT (log(x**) — log(x*)) = Nk and UT Mk = 0.

Lemma IV [2017; Conradi, |., Kahle]

For every steady state x* of N and for every x € im¢) and 1 € R” — {0}
with UMk = 0 and yT,u = [k, there is another steady state

X** — eu OX*.
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Thank you for your attention!
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