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Assume that A, E1, . . . are in some isolated, homogeneous reactor R.

Law of mass action

The rate of a chemical reaction is directly proportional to the product of
concentrations of the reactants.

Denote: [A] = x1, [E1] = x2, [AE1] = x3, [Ap] = x4, [E2] = x5, [ApE2] = x6.
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ẋ3 = k1x1x2 − k2x3 − k3x3
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0 = −k1x1x2 + k2x3 + k6x6
0 = −k1x1x2 + k2x3 + k3x3
0 = k1x1x2 − k2x3 − k3x3
0 = k3x3 − k4x4x5 + k5x6
0 = −k4x4x5 + k5x6 + k6x6
0 = k4x4x5 − k5x6 − k6x6

A. Iosif The isolation property Osnabrück, March 23, 2018 6 / 18



Eg.: From 1−site Phosphorylation to polynomial Rings

x1x2 x3 x2x4

x4x5 x6 x1x5

k1

k2

k3

k4

k5

k6

Trajectory:

ẋ=
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Macaulay2 Experiment 1

i1 : needsPackage("Binomials");

i2 : K=QQ[k_1..k_6]; R=K[x_1..x_6];

i3 : I=ideal(-k_1*x_1*x_2+k_2*x_3+k_6*x_6,

-k_1*x_1*x_2+k_2*x_3+k_3*x_3,

k_1*x_1*x_2-k_2*x_3-k_3*x_3,

k_3*x_3-k_4*x_4*x_5+k_5*x_6,

-k_4*x_4*x_5+k_5*x_6+k_6*x_6,

k_4*x_4*x_5-k_5*x_6-k_6*x_6);

i4 : associatedPrimes I

o4 : {ideal(k_3*x_3-k_6*x_6,

k_4*x_4*x_5+(-k_5-k_6)*x_6,

k_1*x_1*x_2-k_2*x_3-k_6*x_6)}

i5 : isBinomial I

o5 = false

i6 : gens gb I

o6 = | x_3k_3-x_6k_6 x_4x_5k_4-x_6k_5-x_6k_6

x_1x_2k_1-x_3k_2-x_6k_6 |
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Macaulay2 Experiment 2

i1 : needsPackage("Binomials");

i2 : K=frac(QQ[k_1..k_6]); R=K[x_1..x_6];

i3 : I=ideal(-k_1*x_1*x_2+k_2*x_3+k_6*x_6,

-k_1*x_1*x_2+k_2*x_3+k_3*x_3,

k_1*x_1*x_2-k_2*x_3-k_3*x_3,

k_3*x_3-k_4*x_4*x_5+k_5*x_6,

-k_4*x_4*x_5+k_5*x_6+k_6*x_6,

k_4*x_4*x_5-k_5*x_6-k_6*x_6);

i4 : associatedPrimes I

stdio:4:1:(3): error: expected base field to be QQ or ZZ/p

i5 : isBinomial I

o5 = true

i6 : gens gb I

o6 = | x_3-k_6/k_3x_6 x_4x_5+(-k_5-k_6)/k_4x_6

x_1x_2+(-k_2k_6-k_3k_6)/k_1k_3x_6 |
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Example: From 1−site Phosphorylation to Rings

Let fi ∈ Q(k)[x ] denote the right hand side of ẋi , i ∈ [6].

Let I := 〈f1, . . . , f6〉. We observe that I is binomial.

Let V := {x ∈ R6 : f (x) = 0, ∀f ∈ I},
V≥0 := V ∩ R6

≥0 and V>0 := V ∩ R6
>0.

As I is binomial, the Zariski closure of V>0 is toric.

Therefore V>0 has a monomial parametrization:

R3
>0 → R6

>0

(t1, t2, t3) 7→
(
k6(k2 + k3)

k1k3

t3
t1
, t1,

k6
k3

t3,
k5 + k6

k4

t3
t2
, t2, t3

)
.
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When does V>0 have a monomial parametrization?

The concentrations are non-negative numbers, so we are only
interested in elements of V≥0.

For many practical purposes only the strictly positive zeros of I are
relevant (i.e. the elements of V>0).

When does V>0 have a monomial parametrization?
By studying the associated primes of I we could answer this question.

Primary decomposition is computationally expensive.
Not even implemented in Macaualay2 for rings like Q(k)[x ].

Look at simpler cases (e.g., systems with the isolation property)
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The kernel of the stoichiometric matrix

Let N be a network on arrows k1, . . . , kr , and species x1, . . . xn.

Let S denote the stoichiometric matrix of N .

Let φ(k , x) := (k1m1, . . . , krmr )T where mi is the source of ki , i ∈ [r ].

The kynetics of N is given by ẋ = Sφ(k , x).

If x∗ is a steady state for the particular value k∗ of k , then
φ(k∗, x∗) ∈ ker(S) ∩ Rr

≥0.

Let E be a matrix whose columns are the extreme rays of
ker(S) ∩ Rr

≥0. Let ni denote the i th row of E .

If E has p columns, let Λ(E ) := {λ ∈ Rp
≥0 : Eλ > 0}.
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If x∗ is a steady state for the particular value k∗ of k , then
φ(k∗, x∗) ∈ ker(S) ∩ Rr

≥0.

Let E be a matrix whose columns are the extreme rays of
ker(S) ∩ Rr

≥0. Let ni denote the i th row of E .

If E has p columns, let Λ(E ) := {λ ∈ Rp
≥0 : Eλ > 0}.

A. Iosif The isolation property Osnabrück, March 23, 2018 11 / 18



The kernel of the stoichiometric matrix

Let N be a network on arrows k1, . . . , kr , and species x1, . . . xn.

Let S denote the stoichiometric matrix of N .

Let φ(k , x) := (k1m1, . . . , krmr )T where mi is the source of ki , i ∈ [r ].

The kynetics of N is given by ẋ = Sφ(k , x).
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Let N be a network on arrows k1, . . . , kr , and species x1, . . . xn.

Let S denote the stoichiometric matrix of N .

Let φ(k , x) := (k1m1, . . . , krmr )T where mi is the source of ki , i ∈ [r ].

The kynetics of N is given by ẋ = Sφ(k , x).
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Clustering the reactions

A superdoubling set is a maximal subset S of [r ], |S| ≥ 2, whose
elements index arrows with the same source.

A precluster is a subset of [r ] indexing those rows of E which lie in
the span of the rows of E indexed by a superdoubling set.

Let R denote the union of all preclusters.

A cluster is an element of the maximal partition of R induced by the
preclusters.
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Mass action networks with the isolation property

Definition

A mass action network has the isolation property when the rows of E
indexed by different clusters have disjoint supports.

Theorem [2017; Conradi, I., Kahle]

If a mass action network N has the isolation property, then the set of
positive steady states V>0 of N has a monomial parametrization.
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Idea of the proof (definitions)

Let Y denote the matrix whose i th column is the exponent vector of
the source of the i th arrow.

If {i , j} is a superdoubling set, then ei − ej ∈ ker(Y), where
{e1, . . . , er} is the cannonical basis of Rr .

Let Udoub denote a matrix with r rows which has a column ei − ej for
each superdoubling set {i , j}.
Let Ũ denote a matrix such that the columns of (Udoub|Ũ) span
ker(Y).
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Idea of the proof

Lemma I [2010; Conradi, Flockerzi]

If i and j belong to the same cluster J, then

log
(
niν
niλ

)
= log

(
njν
njλ

)
:= ψJ(ν, λ) for all ν, λ ∈ Λ(E ).

Definition

If N has γ clusters, J1, . . . , Jγ , let:

ψ : Λ2(E ) → Rγ
(ν, λ) 7→ (ψJ1(ν, λ), . . . , ψJγ (ν, λ)).

Lemma II [2010; Conradi, Flockerzi]

If N has the isolation property then imψ is a linear space.
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Idea of the proof

Let Π ∈ {0, 1}r×γ be such that the support of its i th column is Ji

.

Lemma III [2010; Conradi, Flockerzi]

There are two positive steady states x∗ 6= x∗∗ with and common k∗ if and
only if ∃κ ∈ imψ with YT (log(x∗∗)− log(x∗)) = Πκ and ŨTΠκ = 0.

Lemma IV [2017; Conradi, I., Kahle]

For every steady state x∗ of N and for every κ ∈ imψ and µ ∈ Rn − {0}
with ŨTΠκ = 0 and YTµ = Πκ, there is another steady state
x∗∗ = eµ ◦ x∗.
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Thank you for your attention!
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